MARC

LEADER 00000nab a2200000uu 4500
001 2317738593
003 UK-CbPIL
035 |a 2317738593 
045 0 |b d20030622 
100 1 |a Poldrack, Russ 
245 1 |a Teaching Statistical Analysis Of Fmri Data 
260 |b American Society for Engineering Education-ASEE  |c Jun 22, 2003 
513 |a Conference Proceedings 
520 3 |a Functional magnetic resonance imaging (fMRI) represents a new and important topic in biomedical engineering. Statistical analysis of fMRI data is typically performed using free or commercial software packages that do not facilitate learning about the underlying assumptions and analysis methods; these shortcomings can lead to misinterpretation of the fMRI data and spurious results. We are developing an instructional module for learning the fundamentals of statistical analysis of fMRI data. The goal is to provide a tool for learning about the steps and assumptions underlying standard fMRI data analysis so that students and researchers can develop insights required to use existing analysis methods in an informed fashion and adapt them to their own purposes. The module includes a simulation of fMRI data analysis that provides students with opportunities for hands-on exploration of the key concepts using phantom data as well as sample human fMRI data. The simulation allows students to control relevant parameters and observe intermediate results for each step in the analysis stream (spatial smoothing, motion correction, statistical model parameter selection). It is accompanied by a tutorial that directs students as they use the simulation. The tutorial guides students through the individual processing steps, considering multiple cycles of fMRI data analysis and prompting them to make direct comparisons, with emphasis on how processing choices affect the ultimate interpretation of the fMRI data. I. Introduction While magnetic resonance imaging (MRI) was introduced for clinical use in the 1970s, functional magnetic resonance imaging (fMRI) was discovered in the early 1990s1-4. This relatively new research tool has found widespread use in a variety of applications at the intersection of biomedical engineering and neuroscience, for example, mapping the boundaries between functional regions of the brain, identifying tumor margins prior to surgery, and investigating the pathology underlying diseases such as schizophrenia. fMRI detects activity in the brain by taking advantage of the change in magnetic properties of the blood surrounding Proceedings of the 2003 American Society for Engineering Education Annual Conference & Exposition Copyright 2003, American Society for Engineering Education 
653 |a Data analysis 
653 |a Students 
653 |a Learning 
653 |a Magnetic properties 
653 |a Engineering education 
653 |a Nuclear magnetic resonance--NMR 
653 |a Spatial smoothing 
653 |a Medical imaging 
653 |a Biomedical engineering 
653 |a Mapping 
653 |a Magnetic resonance imaging 
653 |a Brain 
653 |a Engineering 
653 |a Modules 
653 |a Statistical analysis 
653 |a Schizophrenia 
653 |a Statistical models 
653 |a Parameters 
653 |a Computer simulation 
653 |a Surgery 
653 |a Quantitative analysis 
653 |a Property 
653 |a Simulation 
653 |a Teaching 
653 |a Tumors 
653 |a Data 
653 |a Functional magnetic resonance imaging 
653 |a Data processing 
653 |a Statistics 
653 |a Education 
653 |a Pathology 
653 |a Biomedicine 
653 |a Brain tumors 
700 1 |a Hoge, Richard 
700 1 |a Gollub, Randy 
700 1 |a Vangel, Mark 
700 1 |a Lai, Ian 
700 1 |a Greve, Douglas 
700 1 |a Greenberg, Julie 
773 0 |t Association for Engineering Education - Engineering Library Division Papers  |g (Jun 22, 2003), p. 8.1081.1 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2317738593/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://peer.asee.org/teaching-statistical-analysis-of-fmri-data