Acoustical Radar
Guardado en:
| Publicado en: | Association for Engineering Education - Engineering Library Division Papers (Jun 15, 1997), p. 2.55.1 |
|---|---|
| Autor principal: | |
| Publicado: |
American Society for Engineering Education-ASEE
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full text outside of ProQuest |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | NOTE: The first page of text has been automatically extracted and included below in lieu of an abstract Session 2259 Acoustical Radar Leonard Sokoloff DeVRY Technical Institute Virtual Instrumentation is making a significant impact in today’s industry, education and research. DeVRY Technical Institute selected LabVIEW as an excellent representative of this technology and is implementing LabVIEW into its curriculum at all DeVRY campuses in the United States and Canada. LabVIEW@ (Laboratory Virtual Instrument Engineering Workbench) a product of National Instruments@, is a software system that incorporates data acquisition, analysis and presentation, and instrument control. LabVIEW which runs on the PC under Windows, on Sun SPARCstations and on Apple Macintosh computers, uses the graphical programming language, instead of the traditional high level languages such as C language or Basic. All LabVIEW programs called virtual instruments (VIs), consist of a Front Panel and a Block Diagram. The Front Panel contains various controls and indicators while the Block Diagram includes functions. The functions (icons) are wired together inside the Block Diagram (wiring indicates data flow) to create a VI. The execution of a VI is data dependent which means that a node inside the Block Diagram will execute only if data is available at all its input terminals. This differs once again from the execution of a traditional program which executes instructions in the order they are written. As stated earlier, LabVIEW incorporates data acquisition, analysis and presentation into one system. For acquiring data and controlling instruments, LabVIEW supports IEEE-488 (GPIB) and RS-232/422 protocols as well as other D/A, A/D and digital I/O interface boards. The Analysis library offers the user a comprehensive set of tools for signal processing, filtering, statistical analysis, linear algebra operations and many others. This article describes an application of LabVIEW to the acquisition, processing and the display of data. In order to perform data acquisition, LabVIEW software (latest version is 4.01) and data acquisition driver software such as NI-DAQ must be installed. The DAQ board (data acquisition board) must also be installed along with the extension board that plugs into the DAQ board. The extension board provides the user with access to various pins on the DAQ board such the I./O channels. This article is a result of a research project on implementing LabVIEW in our physics courses. Projectile flight simulation is another LabVIEW program that will also be implemented into the physics courses. Other areas of LabVIEW implementation include industrial controls and communication courses. LabVIEW is typical of new skills that students will need in today’s highly competitive job market. 1 |
|---|---|
| Fuente: | Library Science Database |