Supply chain management and Industry 4.0: conducting research in the digital age

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Physical Distribution & Logistics Management vol. 49, no. 10 (2019), p. 945-955
Autor principal: Hofmann, Erik
Altres autors: Sternberg, Henrik, Chen, Haozhe, Pflaum, Alexander, Prockl, Günter
Publicat:
Emerald Group Publishing Limited
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2321194339
003 UK-CbPIL
022 |a 0960-0035 
022 |a 1758-664X 
022 |a 0020-7527 
022 |a 0269-8218 
024 7 |a 10.1108/IJPDLM-11-2019-399  |2 doi 
035 |a 2321194339 
045 2 |b d20191130  |b d20191231 
084 |a 14901  |2 nlm 
100 1 |a Hofmann, Erik 
245 1 |a Supply chain management and Industry 4.0: conducting research in the digital age 
260 |b Emerald Group Publishing Limited  |c 2019 
513 |a Editorial 
520 3 |a Supply chain management and Industry 4.0: conducting research in the digital age Introduction In essence, Industry 4.0[1] enables an automated creation of goods and services as well as supply and delivery, which functions largely without human intervention. Industry 4.0 components and SCM 4.0 characteristics Industry 4.0 typically is declared as consisting of the following components and effects (based on Vogel-Heuser and Hess, 2016): service orientation based on CPS and the internet of services; CPS and multi-agent systems making decentralized decisions; interoperability between machine and human and virtualization of all resources; ability to flexible adaptation to changing requirements (cross-disciplinary modularity); Big data algorithm and technologies provided in real-time (real-time capability); optimization of processes due to flexible automation; data integration cross disciplines and along the life cycle; and access to data securely stored in a cloud or distributed data storage (e.g. blockchain). Combined with a discussion about metrics, this opens avenues for new interesting research questions on the cost and complexity of increased data availability and the resulting need for analytics. (2019) follow the design science methodology and use a novel algorithm to prove that an autonomous robot can perform stock-taking using RFID for item level identification much more accurately and efficiently than the traditional method of using human operators with RFID handheld readers. 
653 |a Freight transportation 
653 |a Big Data 
653 |a Supply chains 
653 |a Data processing 
653 |a Collaboration 
653 |a Logistics 
653 |a Automation 
653 |a Decision making 
653 |a New technology 
653 |a Reasoning 
653 |a Supply chain management 
653 |a Research 
653 |a Data analysis 
653 |a Cloud computing 
653 |a Robotics 
653 |a Artificial intelligence 
653 |a Manufacturing 
653 |a Industry 4.0 
653 |a Digital technology 
653 |a Business ecosystems 
700 1 |a Sternberg, Henrik 
700 1 |a Chen, Haozhe 
700 1 |a Pflaum, Alexander 
700 1 |a Prockl, Günter 
773 0 |t International Journal of Physical Distribution & Logistics Management  |g vol. 49, no. 10 (2019), p. 945-955 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2321194339/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2321194339/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2321194339/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch