RF Dataset of Incumbent Radar Signals in the 3.5 GHz CBRS Band

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Research of the National Institute of Standards and Technology vol. 124 (2019), p. 1
Hlavní autor: Caromi, Raied
Další autoři: Souryal, Michael, Hall, Timothy A
Vydáno:
Superintendent of Documents
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2330956190
003 UK-CbPIL
022 |a 1044-677X 
022 |a 0022-4340 
022 |a 0160-1741 
022 |a 0022-4332 
024 7 |a 10.6028/jres.124.038.  |2 doi 
035 |a 2330956190 
045 2 |b d20190101  |b d20191231 
084 |a 18898  |2 nlm 
100 1 |a Caromi, Raied 
245 1 |a RF Dataset of Incumbent Radar Signals in the 3.5 GHz CBRS Band 
260 |b Superintendent of Documents  |c 2019 
513 |a Journal Article 
520 3 |a In addition to test accuracy, receiver operating characteristic (ROC) curves are of interest for evaluating detection performance. [...]we chose a relatively large number of waveforms for the dataset in order to provide enough test points per SNR value to generate ROC curves. The National Institute of Standards and Technology is an agency of the U.S. Department of Commerce. 1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. [2] Sanders FH, Carroll JE, Sanders GA, Sole RL, Devereux JS, Drocella EF (2017) Procedures for laboratory testing of environmental sensing capability sensor devices (National Telecommunications and Information Administration, Boulder, CO), Technical Memorandum TM 18-527. 
610 4 |a Department of Commerce National Telecommunications & Information Administration National Institute of Standards & Technology 
651 4 |a United States--US 
653 |a Wireless networks 
653 |a Waveforms 
653 |a Datasets 
653 |a Deep learning 
653 |a Federal agencies 
653 |a Laboratory tests 
653 |a Signal processing 
653 |a Noise 
653 |a Algorithms 
653 |a Environmental testing 
653 |a Radar systems 
653 |a Data dictionaries 
653 |a Machine learning 
653 |a Artificial intelligence 
653 |a Laboratories 
653 |a Economic 
700 1 |a Souryal, Michael 
700 1 |a Hall, Timothy A 
773 0 |t Journal of Research of the National Institute of Standards and Technology  |g vol. 124 (2019), p. 1 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2330956190/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2330956190/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2330956190/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch