Hybrid guided space-time optical modes in unpatterned films

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jan 7, 2020), p. n/a
Autor principal: Abbas Shiri
Otros Autores: Yessenov, Murat, Webster, Scott, Schepler, Kenneth L, Abouraddy, Ayman F
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2334484323
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1038/s41467-020-20009-2  |2 doi 
035 |a 2334484323 
045 0 |b d20200107 
100 1 |a Abbas Shiri 
245 1 |a Hybrid guided space-time optical modes in unpatterned films 
260 |b Cornell University Library, arXiv.org  |c Jan 7, 2020 
513 |a Working Paper 
520 3 |a Light can be confined transversely and delivered axially in a waveguide. However, waveguides are lossy static structures whose modal characteristics are fundamentally determined by the boundary conditions, and thus cannot be readily changed post-fabrication. Here we show that unpatterned planar optical films can be exploited for low-loss two-dimensional waveguiding by using `space-time' wave packets, which are the unique family of one-dimensional propagation-invariant pulsed optical beams. We observe `hybrid guided' space-time modes that are index-guided in one transverse dimension in the film and localized along the unbounded transverse dimension via the intrinsic spatio-temporal structure of the field. We demonstrate that these field configurations enable overriding the boundary conditions by varying post-fabrication the group index of the fundamental mode in a 2-\(\mu\)m-thick, 25-mm-long silica film, which is achieved by modifying the field's spatio-temporal structure along the unbounded dimension. Tunability of the group index over an unprecedented range from 1.26 to 1.77 around the planar-waveguide value of 1.47 is verified - while maintaining a spectrally flat zero-dispersion profile. Our work paves the way to to the utilization of space-time wave packets in on-chip photonic platforms, and may enable new phase-matching strategies that circumvent the restrictions due to intrinsic material properties. 
653 |a Planar waveguides 
653 |a Material properties 
653 |a Beams (radiation) 
653 |a Wave packets 
653 |a Silicon dioxide 
653 |a Phase matching 
653 |a Boundary conditions 
653 |a Spacetime 
653 |a Wave propagation 
653 |a Thin films 
653 |a Photonics 
653 |a Pulse propagation 
653 |a Waveguides 
700 1 |a Yessenov, Murat 
700 1 |a Webster, Scott 
700 1 |a Schepler, Kenneth L 
700 1 |a Abouraddy, Ayman F 
773 0 |t arXiv.org  |g (Jan 7, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2334484323/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2001.01991