Novel servo-feed-drive model considering cutting force and structural effects in milling to predict servo dynamic behaviors

Sparad:
Bibliografiska uppgifter
I publikationen:The International Journal of Advanced Manufacturing Technology vol. 106, no. 3-4 (Feb 2020), p. 1441
Huvudupphov: Chen-Jung, Li
Övriga upphov: Hsiang-Chun, Tseng, Tsai Meng-Shiun, Chih-Chun, Cheng
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 2343358849
003 UK-CbPIL
022 |a 0268-3768 
022 |a 1433-3015 
024 7 |a 10.1007/s00170-019-04778-9  |2 doi 
035 |a 2343358849 
045 2 |b d20200201  |b d20200229 
100 1 |a Chen-Jung, Li  |u National Kaohsiung University of Science and Technology, Department of Mechatronics Engineering, Kaohsiung City, People’s Republic of China (GRID:grid.412111.6) (ISNI:0000 0004 0638 9985) 
245 1 |a Novel servo-feed-drive model considering cutting force and structural effects in milling to predict servo dynamic behaviors 
260 |b Springer Nature B.V.  |c Feb 2020 
513 |a Journal Article 
520 3 |a This paper presents an integrated servo-feed-drive model including the cutting force and structural effect to predict tracking errors in an end-milling process. Most conventional approaches consider the cutting force to be an equivalent torque to servo feed drive. However, in addition to acting as the equivalent torque to the servo feed drive, cutting forces also cause the machine table to vibrate. This paper considers the aforementioned cutting-force effects to predict tracking errors and then verifies the tracking errors using experimental results. Experiments are conducted on a 3-axis computer numerical control (CNC) machining center to validate the tracking errors predicted by the proposed servo-feed-drive model. For one case study, the peak-to-peak tracking errors from the experimental, proposed, and traditional models are 3 μm, 2.8 μm, and 0.5 μm, respectively, for the x-axis, and 2.1 μm, 1.7 μm, and 0.4 μm, respectively, for the y-axis. The experimental results illustrate that the tracking errors predicted using the proposed model are more accurate than those predicted using the traditional model without consideration of the transmission path. Therefore, it can be concluded that the proposed integrated model provides much accurate tracking-error prediction, and thus, the ball-screw and machine-table flexibilities should be considered. 
653 |a Torque 
653 |a Tables 
653 |a Numerical prediction 
653 |a End milling 
653 |a Machining centres 
653 |a Three axis 
653 |a Tracking errors 
653 |a Milling (machining) 
653 |a Cutting force 
653 |a Tracking stock 
653 |a Equivalence 
653 |a Machine tools 
653 |a Numerical controls 
700 1 |a Hsiang-Chun, Tseng  |u National Chung Cheng University, Department of Mechanical Engineering, Chiayi County, People’s Republic of China (GRID:grid.412111.6) 
700 1 |a Tsai Meng-Shiun  |u National Taiwan University, Department of Mechanical Engineering, Taipei City, People’s Republic of China (GRID:grid.412111.6) 
700 1 |a Chih-Chun, Cheng  |u National Chung Cheng University, Department of Mechanical Engineering, Chiayi County, People’s Republic of China (GRID:grid.412111.6) 
773 0 |t The International Journal of Advanced Manufacturing Technology  |g vol. 106, no. 3-4 (Feb 2020), p. 1441 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2343358849/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2343358849/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch