Query-based learning method for query routing in unstructured P2P systems

Guardado en:
Detalles Bibliográficos
Publicado en:Proceedings on the International Conference on Artificial Intelligence (ICAI) (2019), p. 373
Autor principal: Alshdadi, Abdulrahman A
Publicado:
The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2362909112
003 UK-CbPIL
035 |a 2362909112 
045 2 |b d20190101  |b d20191231 
084 |a 184240  |2 nlm 
100 1 |a Alshdadi, Abdulrahman A  |u Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Saudi Arabia 
245 1 |a Query-based learning method for query routing in unstructured P2P systems 
260 |b The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)  |c 2019 
513 |a Conference Proceedings 
520 3 |a P2P systems allow users to share and access different resources over Internet. Actually, they are an excellent alternative to client/server ones, since they are fault tolerant and more scalable. Nonetheless, searching pertinent peers (i.e., peers which share pertinent resources) to user queries in large scale P2P systems is a major problem. In the literature, this task is commonly named query routing. In this respect, the author introduces in this paper a new query-based routing method for unstructured P2P systems. The main originality of our method is the exploitation of the strong connections between query terms and relevant peers, which provided pertinent results for those queries, to define a user profile model. Thus, the computation of the user profile comes down to extracting special types of triadic formal concepts. The user profile is used latter to efficiently route the forthcoming queries. Simulation results show that our method is more effective than the baseline method. 
653 |a Researchers 
653 |a Methods 
653 |a Queries 
653 |a Client server systems 
653 |a User profiles 
653 |a Fault tolerance 
653 |a Computer simulation 
653 |a Peer to peer computing 
773 0 |t Proceedings on the International Conference on Artificial Intelligence (ICAI)  |g (2019), p. 373 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2362909112/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2362909112/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2362909112/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch