Designing a virtual patient dialogue system based on terminology-rich resources: Challenges and evaluation

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Natural Language Engineering vol. 26, no. 2 (Mar 2020), p. 183
Prif Awdur: Campillos-Llanos, Leonardo
Awduron Eraill: Thomas, Catherine, Bilinski, Éric, Zweigenbaum, Pierre, Rosset, Sophie
Cyhoeddwyd:
Cambridge University Press
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 2370339527
003 UK-CbPIL
022 |a 1351-3249 
022 |a 1469-8110 
022 |a 2977-0424 
024 7 |a 10.1017/S1351324919000329  |2 doi 
035 |a 2370339527 
045 2 |b d20200301  |b d20200331 
084 |a 79062  |2 nlm 
100 1 |a Campillos-Llanos, Leonardo  |u LIMSI, CNRS, Université Paris-Saclay, Orsay, France; SATT Paris-Saclay, Orsay, France 
245 1 |a Designing a virtual patient dialogue system based on terminology-rich resources: Challenges and evaluation 
260 |b Cambridge University Press  |c Mar 2020 
513 |a Journal Article 
520 3 |a Virtual patient software allows health professionals to practise their skills by interacting with tools simulating clinical scenarios. A natural language dialogue system can provide natural interaction for medical history-taking. However, the large number of concepts and terms in the medical domain makes the creation of such a system a demanding task. We designed a dialogue system that stands out from current research by its ability to handle a wide variety of medical specialties and clinical cases. To address the task, we designed a patient record model, a knowledge model for the task and a termino-ontological model that hosts structured thesauri with linguistic, terminological and ontological knowledge. We used a frame- and rule-based approach and terminology-rich resources to handle the medical dialogue. This work focuses on the termino-ontological model, the challenges involved and how the system manages resources for the French language. We adopted a comprehensive approach to collect terms and ontological knowledge, and dictionaries of affixes, synonyms and derivational variants. Resources include domain lists containing over 161,000 terms, and dictionaries with over 959,000 word/concept entries. We assessed our approach by having 71 participants (39 medical doctors and 32 non-medical evaluators) interact with the system and use 35 cases from 18 specialities. We conducted a quantitative evaluation of all components by analysing interaction logs (11,834 turns). Natural language understanding achieved an F-measure of 95.8%. Dialogue management provided on average 74.3 (±9.5)% of correct answers. We performed a qualitative evaluation by collecting 171 five-point Likert scale questionnaires. All evaluated aspects obtained mean scores above the Likert mid-scale point. We analysed the vocabulary coverage with regard to unseen cases: the system covered 97.8% of their terms. Evaluations showed that the system achieved high vocabulary coverage on unseen cases and was assessed as relevant for the task. 
653 |a Natural language 
653 |a French language 
653 |a Dictionaries 
653 |a Medical research 
653 |a Affixes 
653 |a Ontology 
653 |a Physicians 
653 |a Terminology 
653 |a Medical personnel 
653 |a Thesauri 
653 |a Synonyms 
653 |a Domains 
653 |a Computer simulation 
653 |a Medical language 
653 |a Computer mediated communication 
653 |a Dialogue 
653 |a Measures 
653 |a Knowledge 
653 |a Medical history 
653 |a Medical records 
653 |a Evaluation 
653 |a Rules 
653 |a Vocabulary 
653 |a Resources 
653 |a Variants 
653 |a Work skills 
653 |a Patients 
653 |a Social 
700 1 |a Thomas, Catherine  |u LIMSI, CNRS, Université Paris-Saclay, Orsay, France; SATT Paris-Saclay, Orsay, France 
700 1 |a Bilinski, Éric  |u LIMSI, CNRS, Université Paris-Saclay, Orsay, France 
700 1 |a Zweigenbaum, Pierre  |u LIMSI, CNRS, Université Paris-Saclay, Orsay, France 
700 1 |a Rosset, Sophie  |u LIMSI, CNRS, Université Paris-Saclay, Orsay, France 
773 0 |t Natural Language Engineering  |g vol. 26, no. 2 (Mar 2020), p. 183 
786 0 |d ProQuest  |t Psychology Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2370339527/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2370339527/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2370339527/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch