Post Pulse Compression and Partially Adaptive Multi-Waveform Space-Time Adaptive Processing for Heterogeneous Clutter

Guardat en:
Dades bibliogràfiques
Publicat a:ProQuest Dissertations and Theses (2018)
Autor principal: Harnett, Lumumba
Publicat:
ProQuest Dissertations & Theses
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2382015089
003 UK-CbPIL
020 |a 9781392567890 
035 |a 2382015089 
045 2 |b d20180101  |b d20181231 
084 |a 66569  |2 nlm 
100 1 |a Harnett, Lumumba 
245 1 |a Post Pulse Compression and Partially Adaptive Multi-Waveform Space-Time Adaptive Processing for Heterogeneous Clutter 
260 |b ProQuest Dissertations & Theses  |c 2018 
513 |a Dissertation/Thesis 
520 3 |a A new form of multi-waveform space-time adaptive processing (MuW-STAP) is presented. The formulation provides additional training data for adaptive clutter cancellation for ground moving target indication after pulse compression. The pulse compression response is homogenized using stochastic phase filters to produce a smeared response that approximates identically distribution assumed by covariance estimation. Post pulse compression MuW-STAP (PMuW-STAP) is proposed to address clutter heterogeneity that causes degradation in detection performance of STAP similar to single-input multi-output MuW-STAP. Furthermore, the family of MuW-STAP algorithms are computationally expensive due to estimation of multiple covariance matrices and inversion of a single covariance for every range sample. Well-known partially adaptive techniques, previously implemented in STAP, are implemented with PMuW-STAP. Partial adaptation in element-space post-Doppler, beam-space pre-Doppler, and beam-space post-Doppler are presented. Each of these are examined on several simulated, controlled clutter scenarios. Fully adaptive PMuW-STAP is further evaluated on the high-fidelity knowledge aided adaptive radar architecture: knowledge-aided sensor signal processing and expert reasoning (KASSPER) dataset. 
653 |a Electrical engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2018) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2382015089/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2382015089/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch