Evolving Plasticity for Autonomous Learning under Changing Environmental Conditions

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 7, 2020), p. n/a
Autor principal: Yaman, Anil
Otros Autores: Iacca, Giovanni, Decebal Constantin Mocanu, Coler, Matt, Fletcher, George, Pechenizkiy, Mykola
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2384342604
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1162/evco_a_00286  |2 doi 
035 |a 2384342604 
045 0 |b d20201207 
100 1 |a Yaman, Anil 
245 1 |a Evolving Plasticity for Autonomous Learning under Changing Environmental Conditions 
260 |b Cornell University Library, arXiv.org  |c Dec 7, 2020 
513 |a Working Paper 
520 3 |a A fundamental aspect of learning in biological neural networks is the plasticity property which allows them to modify their configurations during their lifetime. Hebbian learning is a biologically plausible mechanism for modeling the plasticity property in artificial neural networks (ANNs), based on the local interactions of neurons. However, the emergence of a coherent global learning behavior from local Hebbian plasticity rules is not very well understood. The goal of this work is to discover interpretable local Hebbian learning rules that can provide autonomous global learning. To achieve this, we use a discrete representation to encode the learning rules in a finite search space. These rules are then used to perform synaptic changes, based on the local interactions of the neurons. We employ genetic algorithms to optimize these rules to allow learning on two separate tasks (a foraging and a prey-predator scenario) in online lifetime learning settings. The resulting evolved rules converged into a set of well-defined interpretable types, that are thoroughly discussed. Notably, the performance of these rules, while adapting the ANNs during the learning tasks, is comparable to that of offline learning methods such as hill climbing. 
653 |a Neurons 
653 |a Activation 
653 |a Neural networks 
653 |a Genetic algorithms 
653 |a Machine learning 
653 |a Biological evolution 
700 1 |a Iacca, Giovanni 
700 1 |a Decebal Constantin Mocanu 
700 1 |a Coler, Matt 
700 1 |a Fletcher, George 
700 1 |a Pechenizkiy, Mykola 
773 0 |t arXiv.org  |g (Dec 7, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2384342604/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1904.01709