Analysis on Computation-Intensive Status Update in Mobile Edge Computing

Guardado en:
Detalles Bibliográficos
Publicado en:IEEE Transactions on Vehicular Technology vol. 69, no. 4 (2020), p. 4353
Autor principal: Kuang, Qiaobin
Otros Autores: Gong, Jie, Chen, Xiang, Ma, Xiao
Publicado:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2392110877
003 UK-CbPIL
022 |a 0018-9545 
022 |a 1939-9359 
024 7 |a 10.1109/TVT.2020.2974816  |2 doi 
035 |a 2392110877 
045 2 |b d20200101  |b d20201231 
084 |a 121532  |2 nlm 
100 1 |a Kuang, Qiaobin  |u School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China 
245 1 |a Analysis on Computation-Intensive Status Update in Mobile Edge Computing 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2020 
513 |a Journal Article 
520 3 |a In status update scenarios, the freshness of information is measured in terms of age-of-information (AoI), which essentially reflects the timeliness for real-time applications to transmit status update messages to a remote controller. For some applications, computational expensive and time consuming data processing is inevitable for status information of messages to be displayed. Mobile edge servers are equipped with adequate computation resources and they are placed close to users. Thus, mobile edge computing (MEC) can be a promising technology to reduce AoI for computation-intensive messages. In this paper, we study the AoI for computation-intensive messages with MEC, and consider three computing schemes: local computing, remote computing at the MEC server, and partial computing, i.e., some part of computing tasks are performed locally, and the rest is executed at the MEC server. Zero-wait policy is adopted in all three schemes. Specifically, in local computing, a new message is generated immediately after the previous one is revealed by computing. While in remote computing and partial computing, a new message is generated once the previous one is received by the remote MEC server. With infinite queue size and exponentially distributed transmission time, closed-form average AoI for exponentially distributed computing time is derived for the three computing schemes. For deterministic computing time, the average AoI is analyzed numerically. Simulation results show that by carefully partitioning the computing tasks, the average AoI in partial computing is the smallest compared to local computing and remote computing. The results also indicate numerically the conditions on which remote computing attains smaller average AoI compared with local computing. 
653 |a Data processing 
653 |a Queues 
653 |a Edge computing 
653 |a Mobile computing 
653 |a Computational efficiency 
653 |a Remote control 
653 |a Remote computing 
653 |a Freshness 
653 |a Messages 
653 |a Servers 
653 |a Computing time 
653 |a Computer simulation 
653 |a Distributed processing 
653 |a Computer networks 
700 1 |a Gong, Jie  |u School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China 
700 1 |a Chen, Xiang  |u School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China 
700 1 |a Ma, Xiao  |u School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China 
773 0 |t IEEE Transactions on Vehicular Technology  |g vol. 69, no. 4 (2020), p. 4353 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2392110877/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch