Sampling Error Correction Evaluated Using a Convective-Scale 1000-Member Ensemble

Salvato in:
Dettagli Bibliografici
Pubblicato in:Monthly Weather Review vol. 148, no. 3 (Mar 2020), p. 1229
Autore principale: Necker, Tobias
Altri autori: Weissmann, Martin, Ruckstuhl, Yvonne, Anderson, Jeffrey, Miyoshi, Takemasa
Pubblicazione:
American Meteorological Society
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 2396869358
003 UK-CbPIL
022 |a 0027-0644 
022 |a 1520-0493 
024 7 |a 10.1175/MWR-D-19-0154.1  |2 doi 
035 |a 2396869358 
045 2 |b d20200301  |b d20200331 
084 |a 32489  |2 nlm 
100 1 |a Necker, Tobias 
245 1 |a Sampling Error Correction Evaluated Using a Convective-Scale 1000-Member Ensemble 
260 |b American Meteorological Society  |c Mar 2020 
513 |a Journal Article 
520 3 |a State-of-the-art ensemble prediction systems usually provide ensembles with only 20–250 members for estimating the uncertainty of the forecast and its spatial and spatiotemporal covariance. Given that the degrees of freedom of atmospheric models are several magnitudes higher, the estimates are therefore substantially affected by sampling errors. For error covariances, spurious correlations lead to random sampling errors, but also a systematic overestimation of the correlation. A common approach to mitigate the impact of sampling errors for data assimilation is to localize correlations. However, this is a challenging task given that physical correlations in the atmosphere can extend over long distances. Besides data assimilation, sampling errors pose an issue for the investigation of spatiotemporal correlations using ensemble sensitivity analysis. Our study evaluates a statistical approach for correcting sampling errors. The applied sampling error correction is a lookup table–based approach and therefore computationally very efficient. We show that this approach substantially improves both the estimates of spatial correlations for data assimilation as well as spatiotemporal correlations for ensemble sensitivity analysis. The evaluation is performed using the first convective-scale 1000-member ensemble simulation for central Europe. Correlations of the 1000-member ensemble forecast serve as truth to assess the performance of the sampling error correction for smaller subsets of the full ensemble. The sampling error correction strongly reduced both random and systematic errors for all evaluated variables, ensemble sizes, and lead times. 
653 |a Sensitivity analysis 
653 |a Estimates 
653 |a Error correction 
653 |a Atmospheric models 
653 |a Data assimilation 
653 |a Ensemble forecasting 
653 |a Statistical analysis 
653 |a Weather forecasting 
653 |a Localization 
653 |a Random sampling 
653 |a Correlation 
653 |a Computer simulation 
653 |a Errors 
653 |a Systematic errors 
653 |a Simulation 
653 |a Precipitation 
653 |a Spatial data 
653 |a Error correction & detection 
653 |a Lookup tables 
653 |a Sample variance 
653 |a Studies 
653 |a Statistical sampling 
653 |a Data collection 
653 |a Covariance 
653 |a Quantitative analysis 
653 |a Error reduction 
653 |a Correlation analysis 
653 |a Sampling error 
653 |a Performance assessment 
653 |a Environmental 
700 1 |a Weissmann, Martin 
700 1 |a Ruckstuhl, Yvonne 
700 1 |a Anderson, Jeffrey 
700 1 |a Miyoshi, Takemasa 
773 0 |t Monthly Weather Review  |g vol. 148, no. 3 (Mar 2020), p. 1229 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2396869358/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2396869358/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2396869358/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch