A Simple Collocation Scheme for Obtaining the Periodic Solutions of the Duffing Equation, and its Equivalence to the High Dimensional Harmonic Balance Method: Subharmonic Oscillations

Guardado en:
Detalles Bibliográficos
Publicado en:Computer Modeling in Engineering & Sciences vol. 84, no. 5 (2012), p. 459
Autor principal: Hong-Hua, Dai
Otros Autores: Schnoor, Matt, Atluri, Satya N
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2397335661
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.3970/cmes.2012.084.459  |2 doi 
035 |a 2397335661 
045 2 |b d20120101  |b d20121231 
100 1 |a Hong-Hua, Dai 
245 1 |a A Simple Collocation Scheme for Obtaining the Periodic Solutions of the Duffing Equation, and its Equivalence to the High Dimensional Harmonic Balance Method: Subharmonic Oscillations 
260 |b Tech Science Press  |c 2012 
513 |a Journal Article 
520 3 |a In this study, the harmonic and 1/3 subharmonic oscillations of a single degree of freedom Duffing oscillator with large nonlinearity and large damping are investigated by using a simple point collocation method applied in the time domain over a period of the periodic solution. The relationship between the proposed collocation method and the high dimensional harmonic balance method (HDHB), proposed earlier by Thomas, Dowell, and Hall (2002), is explored. We demonstrate that the HDHB is not a kind of "harmonic balance method" but essentially a cumbersome version of the collocation method. In using the collocation method, the collocation-resulting nonlinear algebraic equations (NAEs) are solved by the Newton-Raphson method. To start the Newton iterative process, initial values for the N harmonics approximation are provided by solving the corresponding low order harmonic approximation with the aid of Mathematica. We also introduce a generating frequency (ωg), where by the response curves are effectively obtained. Amplitude-frequency response curves for various values of damping, nonlinearity, and force amplitude are obtained and compared to show the effect of each parameter. In addition, the time Galerkin method [the Harmonic-Balance method] is applied and compared with the presently proposed collocation method. Numerical examples confirm the simplicity and effectiveness of the present collocation scheme in the time domain. 
653 |a Amplitudes 
653 |a Frequency response 
653 |a Harmonic balance method 
653 |a Duffing oscillators 
653 |a Duffing equation 
653 |a Iterative methods 
653 |a Nonlinear programming 
653 |a Damping 
653 |a Collocation methods 
653 |a Newton-Raphson method 
653 |a Time domain analysis 
653 |a Oscillations 
653 |a Galerkin method 
653 |a Nonlinear equations 
653 |a Nonlinearity 
653 |a Approximation 
700 1 |a Schnoor, Matt 
700 1 |a Atluri, Satya N 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 84, no. 5 (2012), p. 459 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2397335661/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2397335661/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch