Using Deep Learning to Enhance Event Geometry Reconstruction for the Telescope Array Surface Detector

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Sep 13, 2020), p. n/a
Yazar: Ivanov, D
Diğer Yazarlar: Kalashev, O E, M Yu Kuznetsov, Rubtsov, G I, Sako, T, Tsunesada, Y, Zhezher, Y V
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2403203412
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1088/2632-2153/abae74  |2 doi 
035 |a 2403203412 
045 0 |b d20200913 
100 1 |a Ivanov, D 
245 1 |a Using Deep Learning to Enhance Event Geometry Reconstruction for the Telescope Array Surface Detector 
260 |b Cornell University Library, arXiv.org  |c Sep 13, 2020 
513 |a Working Paper 
520 3 |a The extremely low flux of ultra-high energy cosmic rays (UHECR) makes their direct observation by orbital experiments practically impossible. For this reason all current and planned UHECR experiments detect cosmic rays indirectly by observing the extensive air showers (EAS) initiated by cosmic ray particles in the atmosphere. The world largest statistics of the ultra-high energy EAS events is recorded by the networks of surface stations. In this paper we consider a novel approach for reconstruction of the arrival direction of the primary particle based on the deep convolutional neural network. The latter is using raw time-resolved signals of the set of the adjacent trigger stations as an input. The Telescope Array (TA) Surface Detector (SD) is an array of 507 stations, each containing two layers plastic scintillator with an area of \(3\) m\(^2\). The training of the model is performed with the Monte-Carlo dataset. It is shown that within the Monte-Carlo simulations, the new approach yields better resolution than the traditional reconstruction method based on the fitting of the EAS front. The details of the network architecture and its optimization for this particular task are discussed. 
653 |a Scintillation counters 
653 |a Arrays 
653 |a Surface detectors 
653 |a Stations 
653 |a Computer architecture 
653 |a Reconstruction 
653 |a Cosmic ray showers 
653 |a Artificial neural networks 
653 |a Cosmic rays 
653 |a Computer simulation 
653 |a Optimization 
653 |a Deep learning 
653 |a Monte Carlo simulation 
700 1 |a Kalashev, O E 
700 1 |a M Yu Kuznetsov 
700 1 |a Rubtsov, G I 
700 1 |a Sako, T 
700 1 |a Tsunesada, Y 
700 1 |a Zhezher, Y V 
773 0 |t arXiv.org  |g (Sep 13, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2403203412/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2005.07117