A Task Scheduling Algorithm Based on Classification Mining in Fog Computing Environment

Guardat en:
Dades bibliogràfiques
Publicat a:Wireless Communications & Mobile Computing (Online) vol. 2018 (2018)
Autor principal: Liu, Lindong
Altres autors: Qi, Deyu, Zhou, Naqin, Wu, Yilin
Publicat:
John Wiley & Sons, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2407628105
003 UK-CbPIL
022 |a 1530-8677 
022 |a 1530-8669 
024 7 |a 10.1155/2018/2102348  |2 doi 
035 |a 2407628105 
045 2 |b d20180101  |b d20181231 
084 |a 239331  |2 nlm 
100 1 |a Liu, Lindong  |u Research Institute of Computer Systems, South China University of Technology, Guangzhou, China; Department of Computer Science, Guangdong University of Education, Guangzhou, China 
245 1 |a A Task Scheduling Algorithm Based on Classification Mining in Fog Computing Environment 
260 |b John Wiley & Sons, Inc.  |c 2018 
513 |a Journal Article 
520 3 |a Fog computing (FC) is an emerging paradigm that extends computation, communication, and storage facilities towards the edge of a network. In this heterogeneous and distributed environment, resource allocation is very important. Hence, scheduling will be a challenge to increase productivity and allocate resources appropriately to the tasks. We schedule tasks in fog computing devices based on classification data mining technique. A key contribution is that a novel classification mining algorithm I-Apriori is proposed based on the Apriori algorithm. Another contribution is that we propose a novel task scheduling model and a TSFC (Task Scheduling in Fog Computing) algorithm based on the I-Apriori algorithm. Association rules generated by the I-Apriori algorithm are combined with the minimum completion time of every task in the task set. Furthermore, the task with the minimum completion time is selected to be executed at the fog node with the minimum completion time. We finally evaluate the performance of I-Apriori and TSFC algorithm through experimental simulations. The experimental results show that TSFC algorithm has better performance on reducing the total execution time of tasks and average waiting time. 
653 |a Research 
653 |a Standard deviation 
653 |a Text categorization 
653 |a Task scheduling 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Classification 
653 |a Electronic devices 
653 |a Resource allocation 
653 |a Internet of Things 
653 |a Researchers 
653 |a Traffic congestion 
653 |a Computer simulation 
653 |a Distributed processing 
653 |a Scheduling 
653 |a Big Data 
653 |a Data mining 
653 |a Cloud computing 
653 |a Algorithms 
653 |a Storage facilities 
653 |a Completion time 
653 |a Schedules 
700 1 |a Qi, Deyu  |u Research Institute of Computer Systems, South China University of Technology, Guangzhou, China 
700 1 |a Zhou, Naqin  |u Cyberspace Institute of Advanced technology, Guangzhou University, Guangzhou, China 
700 1 |a Wu, Yilin  |u Department of Computer Science, Guangdong University of Education, Guangzhou, China 
773 0 |t Wireless Communications & Mobile Computing (Online)  |g vol. 2018 (2018) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2407628105/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2407628105/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2407628105/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch