Robust Evaluation for Transportation Network Capacity under Demand Uncertainty

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Advanced Transportation vol. 2017 (2017)
Autor principal: Du, Muqing
Outros Autores: Jiang, Xiaowei, Cheng, Lin, Zheng, Changjiang
Publicado em:
John Wiley & Sons, Inc.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2407643077
003 UK-CbPIL
022 |a 0197-6729 
022 |a 2042-3195 
022 |a 0018-1501 
024 7 |a 10.1155/2017/9814909  |2 doi 
035 |a 2407643077 
045 2 |b d20170101  |b d20171231 
084 |a 164028  |2 nlm 
100 1 |a Du, Muqing  |u College of Civil and Transportation Engineering, Hohai University, 1 Xikang Rd, Nanjing, Jiangsu 210098, China 
245 1 |a Robust Evaluation for Transportation Network Capacity under Demand Uncertainty 
260 |b John Wiley & Sons, Inc.  |c 2017 
513 |a Journal Article 
520 3 |a As more and more cities in worldwide are facing the problems of traffic jam, governments have been concerned about how to design transportation networks with adequate capacity to accommodate travel demands. To evaluate the capacity of a transportation system, the prescribed origin and destination (O-D) matrix for existing travel demand has been noticed to have a significant effect on the results of network capacity models. However, the exact data of the existing O-D demand are usually hard to be obtained in practice. Considering the fluctuation of the real travel demand in transportation networks, the existing travel demand is represented as uncertain parameters which are defined within a bounded set. Thus, a robust reserve network capacity (RRNC) model using min–max optimization is formulated based on the demand uncertainty. An effective heuristic approach utilizing cutting plane method and sensitivity analysis is proposed for the solution of the RRNC problem. Computational experiments and simulations are implemented to demonstrate the validity and performance of the proposed robust model. According to simulation experiments, it is showed that the link flow pattern from the robust solutions to network capacity problems can reveal the probability of high congestion for each link. 
653 |a Sensitivity analysis 
653 |a Optimization 
653 |a Transportation networks 
653 |a Traffic assignment 
653 |a Computer applications 
653 |a Parameter uncertainty 
653 |a Travel 
653 |a Probability distribution 
653 |a Traffic congestion 
653 |a Robustness 
653 |a Computer simulation 
653 |a Heuristic methods 
653 |a Flow pattern 
653 |a Route choice 
653 |a Network management systems 
653 |a Travel demand 
653 |a Transportation systems 
653 |a Traffic jams 
653 |a Equilibrium 
653 |a Transportation planning 
653 |a Economic 
700 1 |a Jiang, Xiaowei  |u School of Transportation, Southeast University, 35 Jinxianghe Rd, Nanjing, Jiangsu 210096, China 
700 1 |a Cheng, Lin  |u School of Transportation, Southeast University, 35 Jinxianghe Rd, Nanjing, Jiangsu 210096, China 
700 1 |a Zheng, Changjiang  |u College of Civil and Transportation Engineering, Hohai University, 1 Xikang Rd, Nanjing, Jiangsu 210098, China 
773 0 |t Journal of Advanced Transportation  |g vol. 2017 (2017) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2407643077/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2407643077/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2407643077/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch