Design and Evaluation of a Mathematical Optimization Model for Traffic Signal Plan Transition Based on Social Cost Function

保存先:
書誌詳細
出版年:Journal of Advanced Transportation vol. 2017 (2017)
第一著者: Peñabaena-Niebles, Rita
その他の著者: Cantillo, Victor, Moura, José Luis, Ibeas, Angel
出版事項:
John Wiley & Sons, Inc.
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 2407644579
003 UK-CbPIL
022 |a 0197-6729 
022 |a 2042-3195 
022 |a 0018-1501 
024 7 |a 10.1155/2017/1943846  |2 doi 
035 |a 2407644579 
045 2 |b d20170101  |b d20171231 
084 |a 164028  |2 nlm 
100 1 |a Peñabaena-Niebles, Rita  |u Department of Industrial Engineering, Universidad del Norte, Atlantico, Colombia 
245 1 |a Design and Evaluation of a Mathematical Optimization Model for Traffic Signal Plan Transition Based on Social Cost Function 
260 |b John Wiley & Sons, Inc.  |c 2017 
513 |a Journal Article 
520 3 |a Signal plan transition is the process of changing from one timing plan to another. It begins when the first intersection starts adjusting signal timing plans and ends when the last intersection completes adjusting signal timing plans. The transition between signal timing plans is required because traffic patterns change during the day. Therefore, it is necessary to modify signal timing parameters offset, phase split, and cycle length for different expectations of traffic volume. This paper presents an alternative and new mathematical model to enhance the performance of traffic signals coordination at intersections during the transition phase. This model is oriented to describe the transition regarding coordination parameters in all intersections of an arterial road for minimizing the social cost during the transition phase expressed in function of costs due to delays, fuel consumption, and air emissions. An ant colony algorithm was designed, coded, and simulated to find the optimal transition parameters using available data. The model was evaluated based on its ability to minimize social costs during the transition period. Results showed that the proposed method performs better than traditional ones. 
651 4 |a United States--US 
653 |a Mathematical models 
653 |a Cost function 
653 |a Emissions 
653 |a Optimization techniques 
653 |a Phase transitions 
653 |a Parameter modification 
653 |a Traffic flow 
653 |a Traffic models 
653 |a Coordination 
653 |a Ant colony optimization 
653 |a Traffic congestion 
653 |a Computer simulation 
653 |a Efficiency 
653 |a Vehicles 
653 |a Signal processing 
653 |a Traffic volume 
653 |a Traffic signals 
653 |a Traffic control 
653 |a Design 
653 |a Algorithms 
653 |a Methods 
653 |a Traffic planning 
653 |a Design optimization 
653 |a Externality 
653 |a Optimization models 
653 |a Traffic intersections 
653 |a Energy consumption 
653 |a Transportation planning 
653 |a Economic 
700 1 |a Cantillo, Victor  |u Department of Civil and Environmental Engineering, Universidad del Norte, Atlantico, Colombia 
700 1 |a Moura, José Luis  |u Department of Transport, Universidad de Cantabria, Cantabria, Spain 
700 1 |a Ibeas, Angel  |u Department of Transport, Universidad de Cantabria, Cantabria, Spain 
773 0 |t Journal of Advanced Transportation  |g vol. 2017 (2017) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2407644579/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2407644579/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2407644579/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch