A Gradient-thresholding Algorithm for Sparse Regularization

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:arXiv.org (Jun 4, 2020), p. n/a
मुख्य लेखक: Nayak, Abinash
प्रकाशित:
Cornell University Library, arXiv.org
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 2410534400
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2410534400 
045 0 |b d20200604 
100 1 |a Nayak, Abinash 
245 1 |a A Gradient-thresholding Algorithm for Sparse Regularization 
260 |b Cornell University Library, arXiv.org  |c Jun 4, 2020 
513 |a Working Paper 
520 3 |a Inverse problems arise in a wide spectrum of applications in fields ranging from engineering to scientific computation. Connected with the rise of interest in inverse problems is the development and analysis of regularization methods, such as Tikhonov-type regularization methods or iterative regularization methods, which are a necessity in most of the inverse problems. In the last few decades, regularization methods motivating sparsity has been the focus of research, due to the high dimensionalty of the real-life data, and \(\mathcal{L}^1\)-regularization methods (such as LASSO or FISTA) has been in its center (due to their computational simplicity). In this paper we propose a new (semi-) iterative regularization method which is not only simpler than the mentioned algorithms but also yields better results, in terms of accuracy and sparsity of the recovered solution. Furthermore, we also present a very effective and practical stopping criterion to choose an appropriate regularization parameter (here, it's iteration index) so as to recover a regularized (sparse) solution. To illustrate the computational efficiency of this algorithm we apply it to numerically solve the image deblurring problem and compare our results with certain standard regularization methods, like total variation, FISTA, LSQR etc. 
653 |a Sparsity 
653 |a Regularization methods 
653 |a Regularization 
653 |a Algorithms 
653 |a Inverse problems 
653 |a Iterative methods 
773 0 |t arXiv.org  |g (Jun 4, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2410534400/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2006.03437