MARC

LEADER 00000nab a2200000uu 4500
001 2414209494
003 UK-CbPIL
022 |a 1991-962X 
022 |a 1991-9603 
024 7 |a 10.5194/gmd-9-3517-2016  |2 doi 
035 |a 2414209494 
045 2 |b d20161001  |b d20161031 
084 |a 123629  |2 nlm 
100 1 |a Sinnesael, Matthias  |u Analytical, Environmental, & Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium 
245 1 |a Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling 
260 |b Copernicus GmbH  |c 2016 
513 |a Journal Article 
520 3 |a Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency.Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in accumulation rate, whereas amplitude modulation identifies eccentricity-modulated precession. The functioning of the time-variant sinusoidal model is illustrated and validated using a synthetic insolation signal. The new modeling approach is tested on two case studies: (1)&#xa0;a Pliocene–Pleistocene benthic <inline-formula>δ18</inline-formula>O record from Ocean Drilling Program (ODP) Site 846 and (2)&#xa0;a Danian magnetic susceptibility record from the Contessa Highway section, Gubbio, Italy. 
653 |a Music 
653 |a Wavelet transforms 
653 |a Fast Fourier transformations 
653 |a Signal processing 
653 |a Polynomials 
653 |a Astronomical models 
653 |a Time domain analysis 
653 |a Spectral analysis 
653 |a Noise 
653 |a Uncertainty analysis 
653 |a Periodic variations 
653 |a Climate change 
653 |a Drilling 
653 |a Computer simulation 
653 |a Magnetic susceptibility 
653 |a Amplitude modulation 
653 |a Amplitude 
653 |a Pliocene 
653 |a Benthos 
653 |a Variation 
653 |a Frequency analysis 
653 |a Pleistocene 
653 |a Audio signals 
653 |a Parameter estimation 
653 |a Waveforms 
653 |a Spectrum analysis 
653 |a Frequency dependence 
653 |a Case studies 
653 |a Modelling 
653 |a Magnetic permeability 
653 |a Ocean Drilling Program (ODP) 
653 |a Coefficients 
653 |a Paleoclimate 
653 |a Components 
653 |a Archives & records 
653 |a Frequency modulation 
653 |a Sedimentation & deposition 
653 |a Parameters 
653 |a Statistical methods 
653 |a Fourier analysis 
653 |a Monte Carlo simulation 
653 |a Environmental 
700 1 |a Zivanovic, Miroslav  |u Department of Electrical and Electronic Engineering, Universidad Pública de Navarra, 31006 Pamplona, Spain 
700 1 |a De Vleeschouwer, David  |u Analytical, Environmental, &amp; Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium; MARUM, Center for Marine Environmental Science, Leobener Strasse, 28359 Bremen, Germany 
700 1 |a Claeys, Philippe  |u Analytical, Environmental, &amp; Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium 
700 1 |a Schoukens, Johan  |u Department of Fundamental Electricity and Instrumentation, Vrije Universiteit Brussel, 1050 Brussels, Belgium 
773 0 |t Geoscientific Model Development  |g vol. 9, no. 10 (2016), p. 3517 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2414209494/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2414209494/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2414209494/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch