Quantum Geometric Machine Learning for Quantum Circuits and Control

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Jul 7, 2020), p. n/a
Hlavní autor: Perrier, Elija
Další autoři: Ferrie, Christopher, Tao, Dacheng
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2416045603
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1088/1367-2630/abbf6b  |2 doi 
035 |a 2416045603 
045 0 |b d20200707 
100 1 |a Perrier, Elija 
245 1 |a Quantum Geometric Machine Learning for Quantum Circuits and Control 
260 |b Cornell University Library, arXiv.org  |c Jul 7, 2020 
513 |a Working Paper 
520 3 |a The application of machine learning techniques to solve problems in quantum control together with established geometric methods for solving optimisation problems leads naturally to an exploration of how machine learning approaches can be used to enhance geometric approaches to solving problems in quantum information processing. In this work, we review and extend the application of deep learning to quantum geometric control problems. Specifically, we demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems by applying novel deep learning algorithms in order to approximate geodesics (and thus minimal circuits) along Lie group manifolds relevant to low-dimensional multi-qubit systems, such as SU(2), SU(4) and SU(8). We demonstrate the superior performance of greybox models, which combine traditional blackbox algorithms with prior domain knowledge of quantum mechanics, as means of learning underlying quantum circuit distributions of interest. Our results demonstrate how geometric control techniques can be used to both (a) verify the extent to which geometrically synthesised quantum circuits lie along geodesic, and thus time-optimal, routes and (b) synthesise those circuits. Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems. 
653 |a Machine learning 
653 |a Geodesy 
653 |a Quantum phenomena 
653 |a Data processing 
653 |a Deep learning 
653 |a Differential geometry 
653 |a Quantum mechanics 
653 |a Time optimal control 
653 |a Optimization 
653 |a Lie groups 
653 |a Circuits 
653 |a Algorithms 
653 |a Information theory 
653 |a Problem solving 
653 |a Qubits (quantum computing) 
700 1 |a Ferrie, Christopher 
700 1 |a Tao, Dacheng 
773 0 |t arXiv.org  |g (Jul 7, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2416045603/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2006.11332