Microsimulation Analysis for Network Traffic Assignment (MANTA) at Metropolitan-Scale for Agile Transportation Planning

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Mar 11, 2021), p. n/a
Hovedforfatter: Yedavalli, Pavan
Andre forfattere: Kumar, Krishna, Waddell, Paul
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2421266622
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2421266622 
045 0 |b d20210311 
100 1 |a Yedavalli, Pavan 
245 1 |a Microsimulation Analysis for Network Traffic Assignment (MANTA) at Metropolitan-Scale for Agile Transportation Planning 
260 |b Cornell University Library, arXiv.org  |c Mar 11, 2021 
513 |a Working Paper 
520 3 |a Abrupt changes in the environment, such as unforeseen events due to climate change, have triggered massive and precipitous changes in human mobility. The ability to quickly predict traffic patterns in different scenarios has become more urgent to support short-term operations and long-term transportation planning. This requires modeling entire metropolitan areas to recognize the upstream and downstream effects on the network. However, there is a well-known trade-off between increasing the level of detail of a model and decreasing computational performance. To achieve the level of detail required for traffic microsimulation, current implementations often compromise by simulating small spatial scales, and those that operate at larger scales often require access to expensive high-performance computing systems or have computation times on the order of days or weeks that discourage productive research and real-time planning. This paper addresses the performance shortcomings by introducing a new platform, MANTA (Microsimulation Analysis for Network Traffic Assignment), for traffic microsimulation at the metropolitan-scale. MANTA employs a highly parallelized GPU implementation that is capable of running metropolitan-scale simulations within a few minutes. The runtime to simulate all morning trips, using half-second timesteps, for the nine-county San Francisco Bay Area is just over four minutes, not including routing and initialization. This computational performance significantly improves the state of the art in large-scale traffic microsimulation. MANTA expands the capacity to analyze detailed travel patterns and travel choices of individuals for infrastructure planning. 
653 |a Emergency vehicles 
653 |a Parallel processing 
653 |a Traffic assignment 
653 |a Emergency preparedness 
653 |a Communications traffic 
653 |a Human performance 
653 |a Resource allocation 
653 |a Transportation networks 
653 |a Emergency management 
653 |a Weather 
653 |a Transportation planning 
653 |a Traffic planning 
653 |a Resource management 
653 |a Downstream effects 
653 |a Travel patterns 
653 |a Traffic capacity 
653 |a Emergency procedures 
653 |a Computer simulation 
700 1 |a Kumar, Krishna 
700 1 |a Waddell, Paul 
773 0 |t arXiv.org  |g (Mar 11, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2421266622/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2007.03614