A comprehensive review of conditional random fields: variants, hybrids and applications

Guardado en:
Detalles Bibliográficos
Publicado en:The Artificial Intelligence Review vol. 53, no. 6 (Aug 2020), p. 4289
Autor principal: Yu Bengong
Otros Autores: Fan Zhaodi
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The conditional random fields (CRFs) model plays an important role in the machine learning field. Driven by the development of the artificial intelligence, the CRF models have enjoyed great advancement. To analyze the recent development of the CRFs, this paper presents a comprehensive review of different versions of the CRF models and their applications. On the basis of elaborating on the background and definition of the CRFs, it analyzes three basic problems faced by the CRF models and reviews their latest improvements. Based on that, it presents the applications of the CRFs in the natural language processing, computer vision, biomedicine, Internet intelligence and other relevant fields. At last, specific analysis and future directions of the CRFs are discussed.
ISSN:0269-2821
1573-7462
DOI:10.1007/s10462-019-09793-6
Fuente:ABI/INFORM Global