A Probabilistic Approach for Data Management in Pervasive Computing Applications

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Sep 10, 2020), p. n/a
Hlavní autor: Kolomvatsos, Kostas
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2441675749
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2441675749 
045 0 |b d20200910 
100 1 |a Kolomvatsos, Kostas 
245 1 |a A Probabilistic Approach for Data Management in Pervasive Computing Applications 
260 |b Cornell University Library, arXiv.org  |c Sep 10, 2020 
513 |a Working Paper 
520 3 |a Current advances in Pervasive Computing (PC) involve the adoption of the huge infrastructures of the Internet of Things (IoT) and the Edge Computing (EC). Both, IoT and EC, can support innovative applications around end users to facilitate their activities. Such applications are built upon the collected data and the appropriate processing demanded in the form of requests. To limit the latency, instead of relying on Cloud for data storage and processing, the research community provides a number of models for data management at the EC. Requests, usually defined in the form of tasks or queries, demand the processing of specific data. A model for pre-processing the data preparing them and detecting their statistics before requests arrive is necessary. In this paper, we propose a promising and easy to implement scheme for selecting the appropriate host of the incoming data based on a probabilistic approach. Our aim is to store similar data in the same distributed datasets to have, beforehand, knowledge on their statistics while keeping their solidity at high levels. As solidity, we consider the limited statistical deviation of data, thus, we can support the storage of highly correlated data in the same dataset. Additionally, we propose an aggregation mechanism for outliers detection applied just after the arrival of data. Outliers are transferred to Cloud for further processing. When data are accepted to be locally stored, we propose a model for selecting the appropriate datasets where they will be replicated for building a fault tolerant system. We analytically describe our model and evaluate it through extensive simulations presenting its pros and cons. 
653 |a Data management 
653 |a Outliers (statistics) 
653 |a Data analysis 
653 |a Internet of Things 
653 |a Fault tolerance 
653 |a End users 
653 |a Edge computing 
653 |a Ubiquitous computing 
653 |a Data storage 
653 |a Statistical analysis 
653 |a Query processing 
653 |a Data collection 
653 |a Computer simulation 
653 |a Datasets 
773 0 |t arXiv.org  |g (Sep 10, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2441675749/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2009.04739