Assessing the Interplay between travel patterns and SARS-CoV-2 outbreak in realistic urban setting

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Sep 25, 2020), p. n/a
Autor Principal: Patil, Rohan
Outros autores: Raviraj Dave, Patel, Harsh, Shah, Viraj M, Chakrabarti, Deep, Bhatia, Udit
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2446782269
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2446782269 
045 0 |b d20200925 
100 1 |a Patil, Rohan 
245 1 |a Assessing the Interplay between travel patterns and SARS-CoV-2 outbreak in realistic urban setting 
260 |b Cornell University Library, arXiv.org  |c Sep 25, 2020 
513 |a Working Paper 
520 3 |a The dense social contact networks and high mobility in congested urban areas facilitate the rapid transmission of infectious diseases. Typical mechanistic epidemiological models are either based on uniform mixing with ad-hoc contact processes or need real-time or archived population mobility data to simulate the social networks. However, the rapid and global transmission of the novel coronavirus (SARS-CoV-2) has led to unprecedented lockdowns at global and regional scales, leaving the archived datasets to limited use. While it is often hypothesized that population density is a significant driver in disease propagation, the disparate disease trajectories and infection rates exhibited by the different cities with comparable densities require a high-resolution description of the disease and its drivers. In this study, we explore the impact of the creation of containment zones on travel patterns within the city. Further, we use a dynamical network-based infectious disease model to understand the key drivers of disease spread at sub-kilometer scales demonstrated in the city of Ahmedabad, India, which has been classified as a SARS-CoV-2 hotspot. We find that in addition to the contact network and population density, road connectivity patterns and ease of transit are strongly correlated with the rate of transmission of the disease. Given the limited access to real-time traffic data during lockdowns, we generate road connectivity networks using open-source imageries and travel patterns from open-source surveys and government reports. Within the proposed framework, we then analyze the relative merits of social distancing, enforced lockdowns, and enhanced testing and quarantining mitigating the disease spread. 
653 |a Urban environments 
653 |a Traffic information 
653 |a Social networks 
653 |a Population density 
653 |a Severe acute respiratory syndrome coronavirus 2 
653 |a Disease 
653 |a Infectious diseases 
653 |a Disease control 
653 |a Containment 
653 |a Viral diseases 
653 |a Real time 
653 |a Travel patterns 
653 |a Computer simulation 
653 |a Urban areas 
700 1 |a Raviraj Dave 
700 1 |a Patel, Harsh 
700 1 |a Shah, Viraj M 
700 1 |a Chakrabarti, Deep 
700 1 |a Bhatia, Udit 
773 0 |t arXiv.org  |g (Sep 25, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2446782269/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2009.12076