Proceedings of the International Conference on Educational Data Mining (EDM) (10th, Wuhan, China, June 25-28, 2017)

Na minha lista:
Detalhes bibliográficos
Publicado no:International Educational Data Mining Society (Jun 2017), p. 1-520
Publicado em:
International Educational Data Mining Society
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2461133038
003 UK-CbPIL
035 |a 2461133038 
045 2 |b d20170601  |b d20170630 
084 |a ED596512 
245 1 |a Proceedings of the International Conference on Educational Data Mining (EDM) (10th, Wuhan, China, June 25-28, 2017) 
260 |b International Educational Data Mining Society  |c Jun 2017 
513 |a Conference Proceeding 
520 3 |a The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer Science and Technology at Tsinghua University; and Dr. Ron Cole, President of Boulder Learning Inc. The main conference invited contributions to the Research Track and Industry Track. 122 submissions were received (71 full, 47 short, 4 industry). 18 full papers papers were accepted (25% acceptance rate) and 32 short papers for oral presentation (42% acceptance rate) and an additional 39 for poster presentations, 3 demonstrations. The industry track includes all 4 submitted industry papers and 1 paper initially submitted as a full paper. The EDM conference provides opportunities for young researchers, and particularly Ph.D. students, to present their research ideas and receive feedback from the peers and more senior researchers. This year, the Doctoral Consortium features 6 such presentations. In addition to the main program, the conference includes 3 workshops: (1) Graph-based Educational Data Mining (G-EDM 2017); (2) Sharing and Reusing Data & Analytics Methods with LearnSphere; and (3) Deep Learning with Educational Data; and 2 tutorials: (1) Why Data Standards are Critical for EDM and AIED; and (2) Principal Stratification for EDM Experiments. [For the 2016 proceedings, see ED592609.] 
651 4 |a China 
653 |a Data Analysis 
653 |a Data Collection 
653 |a Graphs 
653 |a Data Use 
653 |a Educational Research 
653 |a Standards 
653 |a Automation 
653 |a Classification 
653 |a Attention 
653 |a Educational Technology 
653 |a Technology Uses in Education 
653 |a Teaching Methods 
653 |a Behavior 
653 |a Large Group Instruction 
653 |a Online Courses 
653 |a Intelligent Tutoring Systems 
653 |a Peer Teaching 
653 |a Persistence 
653 |a Models 
653 |a Electronic Publishing 
653 |a Measurement 
653 |a Group Discussion 
653 |a Problem Solving 
653 |a Educational Games 
653 |a Grades (Scholastic) 
653 |a Prediction 
653 |a Learner Engagement 
653 |a Coding 
653 |a Vocabulary 
653 |a Generalization 
653 |a Affective Behavior 
653 |a Empathy 
653 |a Cooperative Learning 
653 |a Network Analysis 
653 |a Learning Theories 
653 |a Cues 
653 |a Independent Study 
653 |a Computer Literacy 
653 |a Adults 
653 |a Eye Movements 
653 |a Mathematics Achievement 
653 |a Language 
653 |a Blended Learning 
653 |a Knowledge Level 
653 |a Feedback (Response) 
653 |a Programming 
653 |a Outcomes of Treatment 
653 |a Misconceptions 
653 |a Inquiry 
653 |a Sciences 
653 |a Student Behavior 
653 |a Lecture Method 
653 |a Interaction 
653 |a Natural Language Processing 
653 |a Reading Comprehension 
653 |a Academic Persistence 
653 |a Incidence 
653 |a Cheating 
653 |a Internship Programs 
653 |a Moral Values 
653 |a Artificial Intelligence 
653 |a Content Analysis 
653 |a Learning Strategies 
653 |a Academic Achievement 
653 |a Networks 
653 |a Dropouts 
653 |a Secondary School Science 
653 |a Middle Schools 
653 |a Dormitories 
653 |a Mathematics 
653 |a Tests 
653 |a Integrated Learning Systems 
653 |a Social Networks 
653 |a Web Sites 
653 |a Curriculum 
653 |a STEM Education 
653 |a Reading Difficulties 
653 |a Scoring 
653 |a Writing (Composition) 
653 |a Relevance (Education) 
653 |a Reading Skills 
653 |a College Freshmen 
653 |a Computation 
653 |a Bayesian Statistics 
653 |a Questioning Techniques 
653 |a Metacognition 
653 |a College Students 
653 |a Study Habits 
653 |a Experiments 
653 |a Evaluation Methods 
653 |a Group Activities 
653 |a Reflection 
653 |a Computer Simulation 
653 |a Essays 
653 |a Journal Articles 
653 |a Foreign Countries 
653 |a Home Programs 
653 |a Early Childhood Education 
653 |a Success 
653 |a Mathematics Instruction 
653 |a Computer Assisted Testing 
653 |a Information Dissemination 
653 |a Transformative Learning 
773 0 |t International Educational Data Mining Society  |g (Jun 2017), p. 1-520 
786 0 |d ProQuest  |t ERIC 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2461133038/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://eric.ed.gov/?id=ED596512