CosinorPy: a python package for cosinor-based rhythmometry

Guardat en:
Dades bibliogràfiques
Publicat a:BMC Bioinformatics vol. 21 (2020), p. 1
Autor principal: Moškon, Miha
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2461851928
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-020-03830-w  |2 doi 
035 |a 2461851928 
045 2 |b d20200101  |b d20201231 
084 |a 58459  |2 nlm 
100 1 |a Moškon, Miha 
245 1 |a CosinorPy: a python package for cosinor-based rhythmometry 
260 |b Springer Nature B.V.  |c 2020 
513 |a Journal Article 
520 3 |a Background Even though several computational methods for rhythmicity detection and analysis of biological data have been proposed in recent years, classical trigonometric regression based on cosinor still has several advantages over these methods and is still widely used. Different software packages for cosinor-based rhythmometry exist, but lack certain functionalities and require data in different, non-unified input formats. Results We present CosinorPy, a Python implementation of cosinor-based methods for rhythmicity detection and analysis. CosinorPy merges and extends the functionalities of existing cosinor packages. It supports the analysis of rhythmic data using single- or multi-component cosinor models, automatic selection of the best model, population-mean cosinor regression, and differential rhythmicity assessment. Moreover, it implements functions that can be used in a design of experiments, a synthetic data generator, and import and export of data in different formats. Conclusion CosinorPy is an easy-to-use Python package for straightforward detection and analysis of rhythmicity requiring minimal statistical knowledge, and produces publication-ready figures. Its code, examples, and documentation are available to download from https://github.com/mmoskon/CosinorPy. CosinorPy can be installed manually or by using pip, the package manager for Python packages. The implementation reported in this paper corresponds to the software release v1.1. 
653 |a Data analysis 
653 |a Software packages 
653 |a Computer programs 
653 |a Design of experiments 
653 |a Computer applications 
653 |a Regression analysis 
653 |a Circadian rhythm 
653 |a Time series 
653 |a Statistical analysis 
653 |a Rhythms 
653 |a Regression models 
653 |a Biological analysis 
653 |a Environmental 
773 0 |t BMC Bioinformatics  |g vol. 21 (2020), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2461851928/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2461851928/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2461851928/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch