Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Nov 28, 2020), p. n/a
Kaituhi matua: Yang, Helin
Ētahi atu kaituhi: Zhao, Jun, Xiong, Zehui, Kwok-Yan, Lam, Sun, Sumei, Liang, Xiao
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 2465900433
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2465900433 
045 0 |b d20201128 
100 1 |a Yang, Helin 
245 1 |a Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management 
260 |b Cornell University Library, arXiv.org  |c Nov 28, 2020 
513 |a Working Paper 
520 3 |a Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications. However, due to the privacy concerns of devices and limited computation or communication resource of UAVs, it is impractical to send raw data of devices to UAV servers for model training. Moreover, due to the dynamic channel condition and heterogeneous computing capacity of devices in UAV-enabled networks, the reliability and efficiency of data sharing require to be further improved. In this paper, we develop an asynchronous federated learning (AFL) framework for multi-UAV-enabled networks, which can provide asynchronous distributed computing by enabling model training locally without transmitting raw sensitive data to UAV servers. The device selection strategy is also introduced into the AFL framework to keep the low-quality devices from affecting the learning efficiency and accuracy. Moreover, we propose an asynchronous advantage actor-critic (A3C) based joint device selection, UAVs placement, and resource management algorithm to enhance the federated convergence speed and accuracy. Simulation results demonstrate that our proposed framework and algorithm achieve higher learning accuracy and faster federated execution time compared to other existing solutions. 
653 |a Accuracy 
653 |a Reliability aspects 
653 |a Wireless communications 
653 |a Servers 
653 |a Unmanned aerial vehicles 
653 |a Network reliability 
653 |a Electronic devices 
653 |a Privacy 
653 |a Resource scheduling 
653 |a Algorithms 
653 |a Resource management 
653 |a Machine learning 
653 |a Artificial intelligence 
653 |a Data retrieval 
653 |a Data collection 
653 |a Distributed processing 
653 |a Computer networks 
653 |a Federated learning 
700 1 |a Zhao, Jun 
700 1 |a Xiong, Zehui 
700 1 |a Kwok-Yan, Lam 
700 1 |a Sun, Sumei 
700 1 |a Liang, Xiao 
773 0 |t arXiv.org  |g (Nov 28, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2465900433/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2011.14197