Distributed Computation using Evolutionary Consciousness : An Approach

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Computational Intelligence Systems vol. 8, no. 5 (Sep 2015), p. 928
Autore principale: Bagchi, Susmit
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 2467600329
003 UK-CbPIL
022 |a 1875-6891 
022 |a 1875-6883 
024 7 |a 10.1080/18756891.2015.1099897  |2 doi 
035 |a 2467600329 
045 2 |b d20150901  |b d20150930 
100 1 |a Bagchi, Susmit 
245 1 |a Distributed Computation using Evolutionary Consciousness : An Approach 
260 |b Springer Nature B.V.  |c Sep 2015 
513 |a Journal Article 
520 3 |a The modeling of biological phenomena and its adaptations to distributed computing are promising research areas. The computational modeling of neurobiological phenomena, such as cognition and consciousness, has potential for applications into bio-inspired distributed computing. The functioning of neurological structures is inherently distributed in nature having a closer match to distributed computing. This paper proposes a mathematical model of state of consciousness by following the functional neurophysiology as well as elements of distributed computing. The scopes of evolution of consciousness and memory are incorporated into the model. The nodal classifications and formation of structural hierarchy in distributed computing nodes by incorporating elements of cognitive model are investigated. Evaluation of the model is made by numerical simulation considering different choice functions. The results illustrate that, model of consciousness can be adapted to bio-inspired distributed computing structures and the gradual evolution of consciousness is deterministic under fair excitations from environment. 
653 |a Structural hierarchy 
653 |a Consciousness 
653 |a Evolutionary algorithms 
653 |a Neurophysiology 
653 |a Biomimetics 
653 |a Biological models (mathematics) 
653 |a Distributed processing 
653 |a Computer networks 
653 |a Cognition 
773 0 |t International Journal of Computational Intelligence Systems  |g vol. 8, no. 5 (Sep 2015), p. 928 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2467600329/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2467600329/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch