OpenStats: A robust and scalable software package for reproducible analysis of high-throughput phenotypic data

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 15, no. 12 (Dec 2020), p. e0242933
Hlavní autor: Haselimashhadi, Hamed
Další autoři: Mason, Jeremy C, Mallon, Ann-Marie, Smedley, Damian, Meehan, Terrence F, Parkinson, Helen
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2474262763
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0242933  |2 doi 
035 |a 2474262763 
045 2 |b d20201201  |b d20201231 
084 |a 174835  |2 nlm 
100 1 |a Haselimashhadi, Hamed 
245 1 |a OpenStats: A robust and scalable software package for reproducible analysis of high-throughput phenotypic data 
260 |b Public Library of Science  |c Dec 2020 
513 |a Journal Article 
520 3 |a Reproducibility in the statistical analyses of data from high-throughput phenotyping screens requires a robust and reliable analysis foundation that allows modelling of different possible statistical scenarios. Regular challenges are scalability and extensibility of the analysis software. In this manuscript, we describe OpenStats, a freely available software package that addresses these challenges. We show the performance of the software in a high-throughput phenomic pipeline in the International Mouse Phenotyping Consortium (IMPC) and compare the agreement of the results with the most similar implementation in the literature. OpenStats has significant improvements in speed and scalability compared to existing software packages including a 13-fold improvement in computational time to the current production analysis pipeline in the IMPC. Reduced complexity also promotes FAIR data analysis by providing transparency and benefiting other groups in reproducing and re-usability of the statistical methods and results. OpenStats is freely available under a Creative Commons license at www.bioconductor.org/packages/OpenStats. 
610 4 |a European Molecular Biology Laboratory 
651 4 |a United Kingdom--UK 
653 |a Statistics 
653 |a Software packages 
653 |a Data analysis 
653 |a Consortia 
653 |a Reproducibility 
653 |a Bioinformatics 
653 |a Molecular biology 
653 |a Software 
653 |a Genomes 
653 |a Computer applications 
653 |a Statistical analysis 
653 |a Statistical methods 
653 |a Time series 
653 |a Genotype & phenotype 
653 |a Robustness 
653 |a Statistical analysis of data 
653 |a Computer programs 
653 |a Phenotyping 
653 |a Computing time 
653 |a Laboratories 
653 |a Environmental 
700 1 |a Mason, Jeremy C 
700 1 |a Mallon, Ann-Marie 
700 1 |a Smedley, Damian 
700 1 |a Meehan, Terrence F 
700 1 |a Parkinson, Helen 
773 0 |t PLoS One  |g vol. 15, no. 12 (Dec 2020), p. e0242933 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2474262763/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2474262763/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2474262763/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch