Applying Newton’s second order optimization method to define transition keys between planar coordinate systems

Guardat en:
Dades bibliogràfiques
Publicat a:E3S Web of Conferences vol. 224 (2020), p. n/a
Autor principal: Bykasov, D A
Altres autors: Zubov, A V, Mustafin, M G
Publicat:
EDP Sciences
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2474463106
003 UK-CbPIL
022 |a 2555-0403 
022 |a 2267-1242 
024 7 |a 10.1051/e3sconf/202022401003  |2 doi 
035 |a 2474463106 
045 2 |b d20200101  |b d20201231 
084 |a 268330  |2 nlm 
100 1 |a Bykasov, D A 
245 1 |a Applying Newton’s second order optimization method to define transition keys between planar coordinate systems 
260 |b EDP Sciences  |c 2020 
513 |a Conference Proceedings 
520 3 |a The article considers the theoretical component of Newton’s second-order method, its main advantages and disadvantages when used in geodesy. The algorithm for determining the minimum of target functions by the Newton method of the second order was studied and analyzed in detail. Parameters of connection between flat rectangular coordinate systems are calculated. The task of determining the transition keys is relevant for geodesy. Comparative analysis of Newton’s method with the method of conjugated gradients was carried out. The algorithm for solving this problem was implemented in the Visual Basic for Applications software environment. The obtained data allow us to conclude that the Newton method can be used more widely in geodesy, especially in solving nonlinear optimization problems. However, the successful implementation of the method in geodetic production is possible only if the computational process is automated, by writing software modules in various programming languages to solve a specific problem. 
653 |a Computer programs 
653 |a Geodesy 
653 |a Comparative analysis 
653 |a Mathematical analysis 
653 |a Newton methods 
653 |a Applications programs 
653 |a Algorithms 
653 |a Programming languages 
653 |a Optimization 
653 |a Computer applications 
653 |a Geodetics 
653 |a Visual Basic for Applications 
653 |a Software 
653 |a Cartesian coordinates 
653 |a Environmental 
700 1 |a Zubov, A V 
700 1 |a Mustafin, M G 
773 0 |t E3S Web of Conferences  |g vol. 224 (2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2474463106/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2474463106/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch