Deep Reinforcement Learning for Backup Strategies against Adversaries

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Feb 12, 2021), p. n/a
Hlavní autor: Debus, Pascal
Další autoři: Müller, Nicolas, Böttinger, Konstantin
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2489445568
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2489445568 
045 0 |b d20210212 
100 1 |a Debus, Pascal 
245 1 |a Deep Reinforcement Learning for Backup Strategies against Adversaries 
260 |b Cornell University Library, arXiv.org  |c Feb 12, 2021 
513 |a Working Paper 
520 3 |a Many defensive measures in cyber security are still dominated by heuristics, catalogs of standard procedures, and best practices. Considering the case of data backup strategies, we aim towards mathematically modeling the underlying threat models and decision problems. By formulating backup strategies in the language of stochastic processes, we can translate the challenge of finding optimal defenses into a reinforcement learning problem. This enables us to train autonomous agents that learn to optimally support planning of defense processes. In particular, we tackle the problem of finding an optimal backup scheme in the following adversarial setting: Given \(k\) backup devices, the goal is to defend against an attacker who can infect data at one time but chooses to destroy or encrypt it at a later time, potentially also corrupting multiple backups made in between. In this setting, the usual round-robin scheme, which always replaces the oldest backup, is no longer optimal with respect to avoidable exposure. Thus, to find a defense strategy, we model the problem as a hybrid discrete-continuous action space Markov decision process and subsequently solve it using deep deterministic policy gradients. We show that the proposed algorithm can find storage device update schemes which match or exceed existing schemes with respect to various exposure metrics. 
653 |a Backups 
653 |a Back up systems 
653 |a Algorithms 
653 |a Best practice 
653 |a Stochastic processes 
653 |a Markov processes 
653 |a Catalogs 
653 |a Optimization 
653 |a Deep learning 
653 |a Cybersecurity 
700 1 |a Müller, Nicolas 
700 1 |a Böttinger, Konstantin 
773 0 |t arXiv.org  |g (Feb 12, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2489445568/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2102.06632