A cooperative crowdsourcing framework for knowledge extraction in digital humanities – cases on Tang poetry

Uloženo v:
Podrobná bibliografie
Vydáno v:Aslib Journal of Information Management vol. 72, no. 2 (2020), p. 243-261
Hlavní autor: Liang, Hong
Další autoři: Hou, Wenjun, Wu, Zonghui, Han, Huijie
Vydáno:
Emerald Group Publishing Limited
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2498985491
003 UK-CbPIL
022 |a 2050-3806 
022 |a 1758-3748 
022 |a 0001-253X 
024 7 |a 10.1108/AJIM-07-2019-0192  |2 doi 
035 |a 2498985491 
045 2 |b d20200301  |b d20200430 
084 |a 38172  |2 nlm 
100 1 |a Liang, Hong 
245 1 |a A cooperative crowdsourcing framework for knowledge extraction in digital humanities – cases on Tang poetry 
260 |b Emerald Group Publishing Limited  |c 2020 
513 |a Journal Article 
520 3 |a PurposeThe purpose of this paper is to propose a knowledge extraction framework to extract knowledge, including entities and relationships between them, from unstructured texts in digital humanities (DH).Design/methodology/approachThe proposed cooperative crowdsourcing framework (CCF) uses both human–computer cooperation and crowdsourcing to achieve high-quality and scalable knowledge extraction. CCF integrates active learning with a novel category-based crowdsourcing mechanism to facilitate domain experts labeling and verifying extracted knowledge.FindingsThe case study shows that CCF can effectively and efficiently extract knowledge from multi-sourced heterogeneous data in the field of Tang poetry. Specifically, CCF achieves higher accuracy of knowledge extraction than the state-of-the-art methods, the contribution of feedbacks to the training model can be maximized by the active learning mechanism and the proposed category-based crowdsourcing mechanism can scale up the effective human–computer collaboration by considering the specialization of workers in different categories of tasks.Research limitations/implicationsThis research proposes CCF to enable high-quality and scalable knowledge extraction in the field of Tang poetry. CCF can be generalized to other fields of DH by introducing domain knowledge and experts.Practical implicationsThe extracted knowledge is machine-understandable and can support the research of Tang poetry and knowledge-driven intelligent applications in DH.Originality/valueCCF is the first human-in-the-loop knowledge extraction framework that integrates active learning and crowdsourcing mechanisms; he human–computer cooperation method uses the feedback of domain experts through the active learning mechanism; the category-based crowdsourcing mechanism considers the matching of categories of DH data and especially of domain experts. 
653 |a Big Data 
653 |a Machine learning 
653 |a Accuracy 
653 |a Research methodology 
653 |a Active learning 
653 |a Culture 
653 |a Learning 
653 |a Cooperation 
653 |a Knowledge 
653 |a Classification 
653 |a Archives & records 
653 |a Subject specialists 
653 |a Algorithms 
653 |a Tagging 
653 |a Automation 
653 |a Libraries 
653 |a Digital humanities 
653 |a Crowdsourcing 
653 |a Domains 
653 |a Cultural heritage 
653 |a Dictionaries 
653 |a Human-computer interaction 
653 |a Museums 
653 |a Research 
653 |a Humanities 
653 |a Specialization 
653 |a Computers 
653 |a Humans 
653 |a Knowledge based development 
653 |a Case studies 
653 |a Frame analysis 
653 |a Experts 
653 |a Feedback 
653 |a Extraction 
653 |a Collaboration 
653 |a Novels 
653 |a Intelligence 
653 |a Poetry 
700 1 |a Hou, Wenjun 
700 1 |a Wu, Zonghui 
700 1 |a Han, Huijie 
773 0 |t Aslib Journal of Information Management  |g vol. 72, no. 2 (2020), p. 243-261 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2498985491/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2498985491/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2498985491/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch