Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations

保存先:
書誌詳細
出版年:arXiv.org (Mar 25, 2021), p. n/a
第一著者: Rehm, Florian
その他の著者: Vallecorsa, Sofia, Borras, Kerstin, Krücker, Dirk
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 2505563807
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2505563807 
045 0 |b d20210325 
100 1 |a Rehm, Florian 
245 1 |a Validation of Deep Convolutional Generative Adversarial Networks for High Energy Physics Calorimeter Simulations 
260 |b Cornell University Library, arXiv.org  |c Mar 25, 2021 
513 |a Working Paper 
520 3 |a In particle physics the simulation of particle transport through detectors requires an enormous amount of computational resources, utilizing more than 50% of the resources of the CERN Worldwide Large Hadron Collider Grid. This challenge has motivated the investigation of different, faster approaches for replacing the standard Monte Carlo simulations. Deep Learning Generative Adversarial Networks are among the most promising alternatives. Previous studies showed that they achieve the necessary level of accuracy while decreasing the simulation time by orders of magnitudes. In this paper we present a newly developed neural network architecture which reproduces a three-dimensional problem employing 2D convolutional layers and we compare its performance with an earlier architecture consisting of 3D convolutional layers. The performance evaluation relies on direct comparison to Monte Carlo simulations, in terms of different physics quantities usually employed to quantify the detector response. We prove that our new neural network architecture reaches a higher level of accuracy with respect to the 3D convolutional GAN while reducing the necessary computational resources. Calorimeters are among the most expensive detectors in terms of simulation time. Therefore we focus our study on an electromagnetic calorimeter prototype with a regular highly granular geometry, as an example of future calorimeters. 
653 |a Particle physics 
653 |a Detectors 
653 |a Simulation 
653 |a Physics 
653 |a Performance evaluation 
653 |a Large Hadron Collider 
653 |a Neural networks 
653 |a Computer architecture 
653 |a Computer simulation 
653 |a Generative adversarial networks 
700 1 |a Vallecorsa, Sofia 
700 1 |a Borras, Kerstin 
700 1 |a Krücker, Dirk 
773 0 |t arXiv.org  |g (Mar 25, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2505563807/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2103.13698