Research on Optimized Deployment of Virtual Network Functions in Network Function Virtualization Environment

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Physics: Conference Series vol. 1748, no. 3 (Jan 2021)
Autor principal: Liu, Mingyue
Altres autors: Liu, Feng
Publicat:
IOP Publishing
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2513107371
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/1748/3/032020  |2 doi 
035 |a 2513107371 
045 2 |b d20210101  |b d20210131 
100 1 |a Liu, Mingyue  |u Electronics and Communication Engineering, Beijing University of Aeronautics and Astronautics, Beijing, Beijing, 100191, China 
245 1 |a Research on Optimized Deployment of Virtual Network Functions in Network Function Virtualization Environment 
260 |b IOP Publishing  |c Jan 2021 
513 |a Conference Proceedings 
520 3 |a This paper mainly studies the optimization of dynamically arrived SFCs deployment in the SDN scenarios, and optimizes the end-to-end delay and bandwidth consumption during the deployment. First we build the model of the optimization problem, it is expressed as a 0-1 planning problem. We use ILP to get the optimal solution, cause the problem is NP hard, its runtime increases as network scales increases, so we choose the heuristic algorithm instead to reduce algorithm runtime. During our heuristic algorithm, we design a new method to sort VNFs and network nodes, then use the greedy algorithm to select nodes literately to place VNFs, in order to avoid local optimality, further use the simulated annealing algorithm with the results of the greedy algorithm as its initial solution, and design two methods to generate new deployments, and still repeat iterating to find a better deployment until reaching iteration limits. This paper also considers the SFCs’ lifecycle and trade-off between the two parameters. The simulation proves that the algorithm proposed in this paper can significantly reduce the end-to-end delay and bandwidth consumption than the traditional method, and 80% of its results are very close to the optimal solution with less than 5% error, and the ratio of its runtime and optimal solution’s is at most 0.003, the algorithm also has certain applicability and can be used in other scenarios. 
653 |a Algorithms 
653 |a Virtual networks 
653 |a Consumption 
653 |a Simulated annealing 
653 |a Iterative methods 
653 |a Heuristic methods 
653 |a Optimization 
653 |a Nodes 
653 |a Greedy algorithms 
653 |a Physics 
700 1 |a Liu, Feng  |u Electronics and Communication Engineering, Beijing University of Aeronautics and Astronautics, Beijing, Beijing, 100191, China 
773 0 |t Journal of Physics: Conference Series  |g vol. 1748, no. 3 (Jan 2021) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2513107371/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2513107371/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch