Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Apr 23, 2021), p. n/a
Yazar: Bo, Hongbo
Diğer Yazarlar: McConville, Ryan, Hong, Jun, Liu, Weiru
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2518564423
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2518564423 
045 0 |b d20210423 
100 1 |a Bo, Hongbo 
245 1 |a Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks 
260 |b Cornell University Library, arXiv.org  |c Apr 23, 2021 
513 |a Working Paper 
520 3 |a Data augmentation has been widely used in machine learning for natural language processing and computer vision tasks to improve model performance. However, little research has studied data augmentation on graph neural networks, particularly using augmentation at both train- and test-time. Inspired by the success of augmentation in other domains, we have designed a method for social influence prediction using graph neural networks with train- and test-time augmentation, which can effectively generate multiple augmented graphs for social networks by utilising a variational graph autoencoder in both scenarios. We have evaluated the performance of our method on predicting user influence on multiple social network datasets. Our experimental results show that our end-to-end approach, which jointly trains a graph autoencoder and social influence behaviour classification network, can outperform state-of-the-art approaches, demonstrating the effectiveness of train- and test-time augmentation on graph neural networks for social influence prediction. We observe that this is particularly effective on smaller graphs. 
653 |a Testing time 
653 |a Computer vision 
653 |a Performance evaluation 
653 |a Graphs 
653 |a Social networks 
653 |a Machine learning 
653 |a Natural language processing 
653 |a Neural networks 
653 |a Graph neural networks 
653 |a Data augmentation 
700 1 |a McConville, Ryan 
700 1 |a Hong, Jun 
700 1 |a Liu, Weiru 
773 0 |t arXiv.org  |g (Apr 23, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2518564423/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2104.11641