secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 13, 2024), p. n/a
Autor Principal: Demetrio, Luca
Outros autores: Biggio, Battista
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2519157086
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2519157086 
045 0 |b d20241213 
100 1 |a Demetrio, Luca 
245 1 |a secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python 
260 |b Cornell University Library, arXiv.org  |c Dec 13, 2024 
513 |a Working Paper 
520 3 |a Machine learning has been increasingly used as a first line of defense for Windows malware detection. Recent work has however shown that learning-based malware detectors can be evaded by carefully-perturbed input malware samples, referred to as adversarial EXEmples, thus demanding for tools that can ease and automate the adversarial robustness evaluation of such detectors. To this end, we present secml-malware, the first Python library for computing adversarial attacks on Windows malware detectors. secml-malware implements state-of-the-art white-box and black-box attacks on Windows malware classifiers, by leveraging a set of feasible manipulations that can be applied to Windows programs while preserving their functionality. The library can be used to perform the penetration testing and assessment of the adversarial robustness of Windows malware detectors, and it can be easily extended to include novel attack strategies. Our library is available at https://github.com/pralab/secml_malware. 
653 |a Detectors 
653 |a Python 
653 |a Libraries 
653 |a Malware 
653 |a Machine learning 
653 |a Robustness 
653 |a Evaluation 
653 |a Sensors 
653 |a Classifiers 
700 1 |a Biggio, Battista 
773 0 |t arXiv.org  |g (Dec 13, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2519157086/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2104.12848