Multilayer Resource-aware Partitioning for Fog Application Placement

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (May 23, 2021), p. n/a
Autor principal: Samani, Zahra Najafabadi
Otros Autores: Nishant Saurabh, Prodan, Radu
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2531866150
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/ICFEC51620.2021.00010  |2 doi 
035 |a 2531866150 
045 0 |b d20210523 
100 1 |a Samani, Zahra Najafabadi 
245 1 |a Multilayer Resource-aware Partitioning for Fog Application Placement 
260 |b Cornell University Library, arXiv.org  |c May 23, 2021 
513 |a Working Paper 
520 3 |a Fog computing emerged as a crucial platform for the deployment of IoT applications. The complexity of such applications requires methods that handle the resource diversity and network structure of Fog devices while maximizing the service placement and reducing resource wastage. Prior studies in this domain primarily focused on optimizing specific application requirements and fail to address the network topology combined with the different types of resources encountered in Fog devices. To overcome these problems, we propose a multilayer resource-aware partitioning method to minimize the resource wastage and maximize the service placement and deadline satisfaction rates in a Fog infrastructure with high multi-user application placement requests. Our method represents the heterogeneous Fog resources as a multilayered network graph and partitions them based on network topology and resource features. Afterward, it identifies the appropriate device partitions for placing an application according to its requirements, which need to overlap in the same network topology partition. Simulation results show that our multilayer resource-aware partitioning method is able to place twice as many services, satisfy deadlines for three times as many application requests, and reduce the resource wastage by up to 15-32 times compared to two availability-aware and resource-aware methods. 
653 |a Placement 
653 |a Multilayers 
653 |a Electronic devices 
653 |a Network topologies 
653 |a Partitioning 
653 |a Cloud computing 
653 |a Optimization 
700 1 |a Nishant Saurabh 
700 1 |a Prodan, Radu 
773 0 |t arXiv.org  |g (May 23, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2531866150/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2105.11033