Approximation algorithms for scheduling C-benevolent jobs on weighted machines

Enregistré dans:
Détails bibliographiques
Publié dans:IISE Transactions vol. 52, no. 4 (Apr 2020), p. 432
Auteur principal: Yu, Ge
Autres auteurs: Jacobson, Sheldon H
Publié:
Taylor & Francis Ltd.
Sujets:
Accès en ligne:Citation/Abstract
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 2544344923
003 UK-CbPIL
022 |a 2472-5854 
022 |a 2472-5862 
022 |a 0569-5554 
022 |a 0740-817X 
024 7 |a 10.1080/24725854.2019.1657606  |2 doi 
035 |a 2544344923 
045 2 |b d20200401  |b d20200430 
084 |a 26422  |2 nlm 
100 1 |a Yu, Ge  |u Amazon, Cambridge, MA, USA; 
245 1 |a Approximation algorithms for scheduling C-benevolent jobs on weighted machines 
260 |b Taylor & Francis Ltd.  |c Apr 2020 
513 |a Journal Article 
520 3 |a This article considers a new variation of the online interval scheduling problem, which consists of scheduling C-benevolent jobs on multiple heterogeneous machines with different positive weights. The reward for completing a job assigned to a machine is given by the product of the job value and the machine weight. The objective of this scheduling problem is to maximize the total reward for completed jobs. Two classes of approximation algorithms are analyzed, Cooperative Greedy algorithms and Prioritized Greedy algorithms, with competitive ratios provided. We show that when the weight ratios between machines are small, the Cooperative Greedy algorithm outperforms the Prioritized Greedy algorithm. As the weight ratios increase, the Prioritized Greedy algorithm outperforms the Cooperative Greedy algorithm. Moreover, as the weight ratios approach infinity, the competitive ratio of the Prioritized Greedy algorithm approaches four. We also provide a lower bound of 3/2 and 9/7 for the competitive ratio of any deterministic algorithm for scheduling C-benevolent jobs on two and three machines with arbitrary weights, respectively. 
653 |a Lower bounds 
653 |a Scheduling 
653 |a Approximation 
653 |a Mathematical analysis 
653 |a Algorithms 
653 |a Weight 
653 |a Greedy algorithms 
653 |a Ratios 
700 1 |a Jacobson, Sheldon H  |u Department of Computer Science, University of Illinois at Urbana Champaign, IL, USA 
773 0 |t IISE Transactions  |g vol. 52, no. 4 (Apr 2020), p. 432 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2544344923/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch