Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement

Guardado en:
Detalles Bibliográficos
Publicado en:Engineering with Computers vol. 37, no. 3 (Jul 2021), p. 1943
Autor principal: Chen Siyu
Otros Autores: Gu Chongshi, Lin Chaoning, Zhang, Kang, Zhu, Yantao
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2548896504
003 UK-CbPIL
022 |a 0177-0667 
022 |a 1435-5663 
024 7 |a 10.1007/s00366-019-00924-9  |2 doi 
035 |a 2548896504 
045 2 |b d20210701  |b d20210731 
084 |a 137654  |2 nlm 
100 1 |a Chen Siyu  |u Hohai University, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465) 
245 1 |a Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement 
260 |b Springer Nature B.V.  |c Jul 2021 
513 |a Journal Article 
520 3 |a The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction approach for concrete dam displacement based on optimized relevance vector machine (ORVM). A practical optimization framework for parameters estimation using the parallel Jaya algorithm (PJA) is developed, and various simple kernel/multi-kernel functions of relevance vector machine (RVM) are tested to obtain the optimal selection. The proposed model is tested on radial displacement measurements of a concrete arch dam to mine the effect of hydrostatic, seasonal and irreversible time components on dam deformation. Four algorithms, including support vector regression (SVR), radial basis function neural network (RBF-NN), extreme learning machine (ELM) and the HST-based multiple linear regression (HST-MLR), are used for comparison with the ORVM model. The simulation results demonstrate that the proposed multi-kernel ORVM model has the best performance for predicting the displacement out of range of the used measurements dataset. Meanwhile, the ORVM model has the advantages of probabilistic output and can provide reasonable confidence interval (CI) for dam safety monitoring. This study lays the foundation for the application of RVM in the field of dam health monitoring. 
653 |a Arch dams 
653 |a Dams 
653 |a Radial basis function 
653 |a Parameter estimation 
653 |a Neural networks 
653 |a Model testing 
653 |a Performance prediction 
653 |a Support vector machines 
653 |a Confidence intervals 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Displacement 
653 |a Deformation effects 
653 |a Algorithms 
653 |a Concrete dams 
653 |a Dam safety 
653 |a Machine learning 
653 |a Kernel functions 
653 |a Statistical analysis 
653 |a Detention dams 
653 |a Environmental 
700 1 |a Gu Chongshi  |u Hohai University, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465) 
700 1 |a Lin Chaoning  |u Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465) 
700 1 |a Zhang, Kang  |u Hohai University, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465) 
700 1 |a Zhu, Yantao  |u Hohai University, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, College of Water Conservancy and Hydropower Engineering, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465); Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing, China (GRID:grid.257065.3) (ISNI:0000 0004 1760 3465) 
773 0 |t Engineering with Computers  |g vol. 37, no. 3 (Jul 2021), p. 1943 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2548896504/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2548896504/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch