Feature-Level Fusion of Polarized SAR and Optical Images Based on Random Forest and Conditional Random Fields

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Remote Sensing vol. 13, no. 7 (2021), p. 1323
מחבר ראשי: Kong, Yingying
מחברים אחרים: Biyuan Yan, Liu, Yanjuan, Leung, Henry, Peng, Xiangyang
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 2550424403
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs13071323  |2 doi 
035 |a 2550424403 
045 2 |b d20210101  |b d20211231 
084 |a 231556  |2 nlm 
100 1 |a Kong, Yingying  |u College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; <email>yanbiyuan@nuaa.edu.cn</email> (B.Y.); <email>liuyanjuan@nuaa.edu.cn</email> (Y.L.) 
245 1 |a Feature-Level Fusion of Polarized SAR and Optical Images Based on Random Forest and Conditional Random Fields 
260 |b MDPI AG  |c 2021 
513 |a Journal Article 
520 3 |a In terms of land cover classification, optical images have been proven to have good classification performance. Synthetic Aperture Radar (SAR) has the characteristics of working all-time and all-weather. It has more significant advantages over optical images for the recognition of some scenes, such as water bodies. One of the current challenges is how to fuse the benefits of both to obtain more powerful classification capabilities. This study proposes a classification model based on random forest with the conditional random fields (CRF) for feature-level fusion classification using features extracted from polarized SAR and optical images. In this paper, feature importance is introduced as a weight in the pairwise potential function of the CRF to improve the correction rate of misclassified points. The results show that the dataset combining the two provides significant improvements in feature identification when compared to the dataset using optical or polarized SAR image features alone. Among the four classification models used, the random forest-importance_ conditional random fields (RF-Im_CRF) model developed in this paper obtained the best overall accuracy (OA) and Kappa coefficient, validating the effectiveness of the method. 
653 |a Feature extraction 
653 |a Machine learning 
653 |a Vegetation 
653 |a Accuracy 
653 |a Experiments 
653 |a Classification 
653 |a Synthetic aperture radar 
653 |a Support vector machines 
653 |a Color 
653 |a Decomposition 
653 |a Image classification 
653 |a Decision trees 
653 |a Object recognition 
653 |a Land cover 
653 |a Datasets 
653 |a Conditional random fields 
653 |a Remote sensing 
700 1 |a Biyuan Yan  |u College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; <email>yanbiyuan@nuaa.edu.cn</email> (B.Y.); <email>liuyanjuan@nuaa.edu.cn</email> (Y.L.) 
700 1 |a Liu, Yanjuan  |u College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; <email>yanbiyuan@nuaa.edu.cn</email> (B.Y.); <email>liuyanjuan@nuaa.edu.cn</email> (Y.L.) 
700 1 |a Leung, Henry  |u Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2P 2M5, Canada; <email>Leungh@ucalgary.ca</email> 
700 1 |a Peng, Xiangyang  |u Nanjing Research Institute of Electronics Engineering, Nanjing 210007, China; <email>wwukt@163.com</email> 
773 0 |t Remote Sensing  |g vol. 13, no. 7 (2021), p. 1323 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2550424403/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2550424403/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2550424403/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch