Global Military Machine Learning Technology Development Tracking and Evaluation

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:European Conference on Cyber Warfare and Security (Jun 2021), p. 61
मुख्य लेखक: Chen, Long
अन्य लेखक: Chen, Jianguo
प्रकाशित:
Academic Conferences International Limited
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 2555179604
003 UK-CbPIL
024 7 |a 10.34190/EWS.21.092  |2 doi 
035 |a 2555179604 
045 2 |b d20210601  |b d20210630 
084 |a 142231  |2 nlm 
100 1 |a Chen, Long  |u Beijing Key Laboratory of Network Technology, Beihang University, Beijing, China innovation Technology Research Institute, Beijing Topsec Network Security Technology Co Ltd, China 
245 1 |a Global Military Machine Learning Technology Development Tracking and Evaluation 
260 |b Academic Conferences International Limited  |c Jun 2021 
513 |a Conference Proceedings 
520 3 |a We have carried out global military machine learning technology development tracking and evaluation research, summarized the global military machine learning technology development status, analyzed its main technology development path, studied its development trend, analyzed the global military machine learning technology typical military application cases and development prospects, and proposed Enlightenment suggestions. Related institutions are paying close attention to the development strategy of machine learning in the military field. Representative countries have formulated the technical route of machine learning in the military field. In particular, the U.S. military has seized the opportunity for Intelligence construction. During the past few years, it has been conducting theoretical preparations and technological evolution. The U.S. military's intelligent construction is speeding up in an all-round way, and the overall combat capability will make a sharp jump. In particular, the U.S. Department of Defense(DoD) has accelerated the militarization of artificial intelligence applications and specially established the Joint Artificial Intelligence Center (JAIC) to coordinate and advance military research on artificial intelligence. With regard to machine learning to strengthen the construction and operations of various services and arms, militaries have intensively deployed various military intelligence research projects, carried out research on machine learning intelligent algorithms and promoted the transformation of artificial intelligence technology to intelligence processing, unmanned platforms, command and control, and weapon equipment systems. Troops from different countries around the world are taking machine learning technology into their land-based, sea-based, air-based, space-based and network space platforms weapons, networks and other systems. Taking the US military as an example around machine learning, the US Army conducts research on distributed processing and applied machine learning systems in autonomous networks and heterogeneous environments. The Navy develops unmanned naval information and response electronic attack projects. The Air Force's "quantum plan" and autonomous clusters resilient network, machine learning wingman, and six-generation machine developed so that it greatly increased combat power. Marines carry out the depth of reinforcement learning collaborative information warfare. Space army carries out analysis of the space-based data management. In particular, a series of planned network covered troops cyber threat defense, military IoT network defense, machine learning behavior detection, social network data analysis, and network electronic warfare, and other dimensions. In addition, we investigated the induction machine learning in future operations, intelligence, network, logistics, identification, health, trend data, and a plurality of key areas of current situation with development trend. We also put forward the suggestions. 
610 4 |a Department of Defense 
651 4 |a Russia 
651 4 |a United States--US 
653 |a Command and control 
653 |a Weapons 
653 |a Social networks 
653 |a Military applications 
653 |a Induction motors 
653 |a Space stations 
653 |a Military intelligence 
653 |a Tracking 
653 |a Machine learning 
653 |a Military technology 
653 |a Defense 
653 |a Strategic planning 
653 |a Armed forces 
653 |a Distributed processing 
653 |a Information warfare 
653 |a Data management 
653 |a Data analysis 
653 |a Federal agencies 
653 |a Technology assessment 
653 |a Cooperation 
653 |a Electronic warfare 
653 |a Algorithms 
653 |a Logistics 
653 |a Military engineering 
653 |a Artificial intelligence 
653 |a Research projects 
653 |a Control equipment 
653 |a Collaborative learning 
653 |a Educational technology 
653 |a Military weapons 
653 |a Trends 
653 |a Reinforcement 
653 |a Technology 
653 |a Equipment 
653 |a Intelligence gathering 
653 |a War 
653 |a Space weapons 
653 |a Militarization 
653 |a Navy 
653 |a Development strategies 
653 |a Enlightenment 
653 |a Evaluation research 
653 |a Space technology 
653 |a Cooperative learning 
653 |a Induction 
653 |a Military engagements 
653 |a Space warfare 
653 |a Army 
653 |a Transformation 
653 |a Social factors 
653 |a Air force 
700 1 |a Chen, Jianguo  |u Hebei Seismological Station, Earthquake Administration of Hebei Province, Shijiazhuang, China 
773 0 |t European Conference on Cyber Warfare and Security  |g (Jun 2021), p. 61 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2555179604/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2555179604/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2555179604/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch