Evaluating the Effectiveness of an Ensemble Random Forest Machine Learning Algorithm in Detecting Cyberbullying in the 4chan Politically Incorrect Board Social

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2021)
Autor principal: Henry, Christopher C.
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2559476408
003 UK-CbPIL
020 |a 9798534699081 
035 |a 2559476408 
045 2 |b d20210101  |b d20211231 
084 |a 66569  |2 nlm 
100 1 |a Henry, Christopher C. 
245 1 |a Evaluating the Effectiveness of an Ensemble Random Forest Machine Learning Algorithm in Detecting Cyberbullying in the 4chan Politically Incorrect Board Social 
260 |b ProQuest Dissertations & Theses  |c 2021 
513 |a Dissertation/Thesis 
520 3 |a The United States has seen a drastic increase in the occurrences of cyberbullying. Children are often on the receiving end of this horrible phenomenon. The topic of cyberbullying common area of research; however, the body of research on the automated detection of cyberbullying on social media using ensemble learning is still in its infancy. The purpose of this study was to determine if a random forest ensemble learning method is effective at the identification of cyberbullying on 4chan Politically Incorrect social media message board. 4chan is a unique social media platform where most members post anonymously and post without fear of retribution. The use of 4chan in this study represents an opportunity to research cyberbullying on social media platforms beyond those typically studied, such as Twitter and Facebook. A structured experiment was conducted. A labeled dataset was created and trained using a learning curve method to develop an ensemble learning model for the automated detection of a cyberbully. Feature extraction was performed using term frequency-inverse document frequency (TF-IDF) and the model training was performed using a random forest classifier. The experiment result indicated that the ensemble learning algorithm proves to be an effective tool in detecting cyberbullying on 4chan. The performance of the model trained with a random forest classifier was reported as 87% precision, 84% recall, 81% F1-score, and 83% accuracy. 
653 |a Information technology 
653 |a Artificial intelligence 
653 |a Social research 
653 |a Research 
653 |a Behavior 
653 |a Socioeconomic factors 
653 |a Accuracy 
653 |a Internet 
653 |a Datasets 
653 |a Social networks 
653 |a Brain 
653 |a Researchers 
653 |a Registration 
653 |a Automation 
653 |a Young adults 
653 |a Computer security 
653 |a Power 
653 |a Society 
653 |a Neural networks 
653 |a Classification 
653 |a Mental depression 
653 |a Children & youth 
653 |a Hate speech 
653 |a Algorithms 
653 |a Mental health 
653 |a Decision trees 
653 |a Anxiety 
773 0 |t ProQuest Dissertations and Theses  |g (2021) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2559476408/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2559476408/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch