Approximate Petz recovery from the geometry of density operators

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Mar 18, 2022), p. n/a
Autor principal: Cree, Sam
Altres autors: Sorce, Jonathan
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2564692928
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1007/s00220-022-04357-2  |2 doi 
035 |a 2564692928 
045 0 |b d20220318 
100 1 |a Cree, Sam 
245 1 |a Approximate Petz recovery from the geometry of density operators 
260 |b Cornell University Library, arXiv.org  |c Mar 18, 2022 
513 |a Working Paper 
520 3 |a We derive a new bound on the effectiveness of the Petz map as a universal recovery channel in approximate quantum error correction using the second sandwiched R\'{e}nyi relative entropy \(\tilde{D}_{2}\). For large Hilbert spaces, our bound implies that the Petz map performs quantum error correction with order-\(\epsilon\) accuracy whenever the data processing inequality for \(\tilde{D}_{2}\) is saturated up to terms of order \(\epsilon^2\) times the inverse Hilbert space dimension. Conceptually, our result is obtained by extending arXiv:2011.03473, in which we studied exact saturation of the data processing inequality using differential geometry, to the case of approximate saturation. Important roles are played by (i) the fact that the exponential of the second sandwiched R\'{e}nyi relative entropy is quadratic in its first argument, and (ii) the observation that the second sandwiched R\'{e}nyi relative entropy satisfies the data processing inequality even when its first argument is a non-positive Hermitian operator. 
653 |a Data processing 
653 |a Recovery 
653 |a Entropy 
653 |a Inequality 
653 |a Error correction & detection 
653 |a Differential geometry 
653 |a Operators (mathematics) 
653 |a Hilbert space 
653 |a Error correction 
653 |a Saturation 
700 1 |a Sorce, Jonathan 
773 0 |t arXiv.org  |g (Mar 18, 2022), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2564692928/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2108.10893