Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:IEEE Journal on Selected Areas in Communications vol. 39, no. 10 (2021), p. 3144
Հիմնական հեղինակ: Yang, Helin
Այլ հեղինակներ: Zhao, Jun, Xiong, Zehui, Kwok-Yan, Lam, Sun, Sumei, Liang, Xiao
Հրապարակվել է:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 2572665880
003 UK-CbPIL
022 |a 0733-8716 
022 |a 1558-0008 
024 7 |a 10.1109/JSAC.2021.3088655  |2 doi 
035 |a 2572665880 
045 2 |b d20210101  |b d20211231 
084 |a 121420  |2 nlm 
100 1 |a Yang, Helin  |u Strategic Centre for Research in Privacy-Preserving Technologies, Nanyang Technological University, Singapore 
245 1 |a Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2021 
513 |a Journal Article 
520 3 |a Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, machine learning (ML) model training, and wireless communications. However, due to the privacy concerns of devices and limited computation or communication resource of UAVs, it is impractical to send raw data of devices to UAV servers for model training. Moreover, due to the dynamic channel condition and heterogeneous computing capacity of devices in UAV-enabled networks, the reliability and efficiency of data sharing require to be further improved. In this paper, we develop an asynchronous federated learning (AFL) framework for multi-UAV-enabled networks, which can provide asynchronous distributed computing by enabling model training locally without transmitting raw sensitive data to UAV servers. The device selection strategy is also introduced into the AFL framework to keep the low-quality devices from affecting the learning efficiency and accuracy. Moreover, we propose an asynchronous advantage actor-critic (A3C) based joint device selection, UAVs placement, and resource management algorithm to enhance the federated convergence speed and accuracy. Simulation results demonstrate that our proposed framework and algorithm achieve higher learning accuracy and faster federated execution time compared to other existing solutions. 
653 |a Accuracy 
653 |a Reliability aspects 
653 |a Wireless communications 
653 |a Servers 
653 |a Unmanned aerial vehicles 
653 |a Network reliability 
653 |a Electronic devices 
653 |a Privacy 
653 |a Resource scheduling 
653 |a Algorithms 
653 |a Resource management 
653 |a Machine learning 
653 |a Data retrieval 
653 |a Data collection 
653 |a Distributed processing 
653 |a Computer networks 
653 |a Federated learning 
700 1 |a Zhao, Jun  |u Strategic Centre for Research in Privacy-Preserving Technologies, Nanyang Technological University, Singapore 
700 1 |a Xiong, Zehui  |u School of Computer Science and Engineering, Nanyang Technological University, Singapore 
700 1 |a Kwok-Yan, Lam  |u Strategic Centre for Research in Privacy-Preserving Technologies, Nanyang Technological University, Singapore 
700 1 |a Sun, Sumei  |u Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore 
700 1 |a Liang, Xiao  |u Department of Information and Communication Engineering, Xiamen University, Xiamen, China 
773 0 |t IEEE Journal on Selected Areas in Communications  |g vol. 39, no. 10 (2021), p. 3144 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2572665880/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch