A High-Efficiency Spectral Method for Two-Dimensional Ocean Acoustic Propagation Calculations

Guardado en:
Detalles Bibliográficos
Publicado en:Entropy vol. 23, no. 9 (2021), p. 1227
Autor principal: Ma, Xian
Otros Autores: Liu, Wei, Xiao, Wenbin, Lan, Qiang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2576407500
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e23091227  |2 doi 
035 |a 2576407500 
045 2 |b d20210101  |b d20211231 
084 |a 231460  |2 nlm 
100 1 |a Ma, Xian 
245 1 |a A High-Efficiency Spectral Method for Two-Dimensional Ocean Acoustic Propagation Calculations 
260 |b MDPI AG  |c 2021 
513 |a Journal Article 
520 3 |a The accuracy and efficiency of sound field calculations highly concern issues of hydroacoustics. Recently, one-dimensional spectral methods have shown high-precision characteristics when solving the sound field but can solve only simplified models of underwater acoustic propagation, thus their application range is small. Therefore, it is necessary to directly calculate the two-dimensional Helmholtz equation of ocean acoustic propagation. Here, we use the Chebyshev–Galerkin and Chebyshev collocation methods to solve the two-dimensional Helmholtz model equation. Then, the Chebyshev collocation method is used to model ocean acoustic propagation because, unlike the Galerkin method, the collocation method does not need stringent boundary conditions. Compared with the mature Kraken program, the Chebyshev collocation method exhibits a higher numerical accuracy. However, the shortcoming of the collocation method is that the computational efficiency cannot satisfy the requirements of real-time applications due to the large number of calculations. Then, we implemented the parallel code of the collocation method, which could effectively improve calculation effectiveness. 
653 |a Accuracy 
653 |a Propagation 
653 |a Acoustic propagation 
653 |a Sound fields 
653 |a Sound propagation 
653 |a Partial differential equations 
653 |a Helmholtz equations 
653 |a Optimization 
653 |a Collocation methods 
653 |a Chebyshev approximation 
653 |a Boundary conditions 
653 |a Methods 
653 |a Polynomials 
653 |a Underwater acoustics 
653 |a Acoustics 
653 |a Galerkin method 
653 |a Two dimensional models 
653 |a Spectral methods 
700 1 |a Liu, Wei 
700 1 |a Xiao, Wenbin 
700 1 |a Lan, Qiang 
773 0 |t Entropy  |g vol. 23, no. 9 (2021), p. 1227 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2576407500/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2576407500/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2576407500/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch