easyFulcrum: An R package to process and analyze ecological sampling data generated using the Fulcrum mobile application

Shranjeno v:
Bibliografske podrobnosti
izdano v:PLoS One vol. 16, no. 10 (Oct 2021), p. e0254293
Glavni avtor: Matteo Di Bernardo
Drugi avtorji: Crombie, Timothy A, Cook, Daniel E, Andersen, Erik C
Izdano:
Public Library of Science
Teme:
Online dostop:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 2579572130
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0254293  |2 doi 
035 |a 2579572130 
045 2 |b d20211001  |b d20211031 
084 |a 174835  |2 nlm 
100 1 |a Matteo Di Bernardo 
245 1 |a easyFulcrum: An R package to process and analyze ecological sampling data generated using the Fulcrum mobile application 
260 |b Public Library of Science  |c Oct 2021 
513 |a Journal Article 
520 3 |a Large-scale ecological sampling can be difficult and costly, especially for organisms that are too small to be easily identified in a natural environment by eye. Typically, these microscopic floral and fauna are sampled by collecting substrates from nature and then separating organisms from substrates in the laboratory. In many cases, diverse organisms can be identified to the species-level using molecular barcodes. To facilitate large-scale ecological sampling of microscopic organisms, we used a geographic data-collection platform for mobile devices called Fulcrum that streamlines the organization of geospatial sampling data, substrate photographs, and environmental data at natural sampling sites. These sampling data are then linked to organism isolation data from the laboratory. Here, we describe the easyFulcrum R package, which can be used to clean, process, and visualize ecological field sampling and isolation data exported from the Fulcrum mobile application. We developed this package for wild nematode sampling, but it can be used with other organisms. The advantages of using Fulcrum combined with easyFulcrum are (1) the elimination of transcription errors by replacing manual data entry and/or spreadsheets with a mobile application, (2) the ability to clean, process, and visualize sampling data using a standardized set of functions in the R software environment, and (3) the ability to join disparate data to each other, including environmental data from the field and the molecularly defined identities of individual specimens isolated from samples. 
610 4 |a Northwestern University 
651 4 |a United States--US 
653 |a Data transfer (computers) 
653 |a Nematodes 
653 |a Applications programs 
653 |a Electronic devices 
653 |a Transcription 
653 |a Mobile computing 
653 |a Sampling 
653 |a Organisms 
653 |a Data collection platforms 
653 |a Streamlines 
653 |a Substrates 
653 |a Exports 
653 |a Photographs 
653 |a Data collection 
653 |a Spreadsheets 
653 |a Laboratories 
653 |a Natural environment 
653 |a Data visualization 
653 |a Environmental 
700 1 |a Crombie, Timothy A 
700 1 |a Cook, Daniel E 
700 1 |a Andersen, Erik C 
773 0 |t PLoS One  |g vol. 16, no. 10 (Oct 2021), p. e0254293 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2579572130/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2579572130/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2579572130/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch