Machine Learning-Based Three-Month Outcome Prediction in Acute Ischemic Stroke: A Single Cerebrovascular-Specialty Hospital Study in South Korea

Gardado en:
Detalles Bibliográficos
Publicado en:Diagnostics vol. 11, no. 10 (2021), p. 1909
Autor Principal: Park, Dougho
Outros autores: Jeong, Eunhwan, Kim, Haejong, Pyun, Hae Wook, Kim, Haemin, Yeon-Ju Choi, Kim, Youngsoo, Jin, Suntak, Hong, Daeyoung, Dong Woo Lee, Su Yun Lee, Mun-Chul, Kim
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2584363437
003 UK-CbPIL
022 |a 2075-4418 
024 7 |a 10.3390/diagnostics11101909  |2 doi 
035 |a 2584363437 
045 2 |b d20210101  |b d20211231 
084 |a 231452  |2 nlm 
100 1 |a Park, Dougho  |u Department of Rehabilitation Medicine, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>parkdougho@gmail.com</email> 
245 1 |a Machine Learning-Based Three-Month Outcome Prediction in Acute Ischemic Stroke: A Single Cerebrovascular-Specialty Hospital Study in South Korea 
260 |b MDPI AG  |c 2021 
513 |a Journal Article 
520 3 |a Background: Functional outcomes after acute ischemic stroke are of great concern to patients and their families, as well as physicians and surgeons who make the clinical decisions. We developed machine learning (ML)-based functional outcome prediction models in acute ischemic stroke. Methods: This retrospective study used a prospective cohort database. A total of 1066 patients with acute ischemic stroke between January 2019 and March 2021 were included. Variables such as demographic factors, stroke-related factors, laboratory findings, and comorbidities were utilized at the time of admission. Five ML algorithms were applied to predict a favorable functional outcome (modified Rankin Scale 0 or 1) at 3 months after stroke onset. Results: Regularized logistic regression showed the best performance with an area under the receiver operating characteristic curve (AUC) of 0.86. Support vector machines represented the second-highest AUC of 0.85 with the highest F1-score of 0.86, and finally, all ML models applied achieved an AUC > 0.8. The National Institute of Health Stroke Scale at admission and age were consistently the top two important variables for generalized logistic regression, random forest, and extreme gradient boosting models. Conclusions: ML-based functional outcome prediction models for acute ischemic stroke were validated and proven to be readily applicable and useful. 
651 4 |a South Korea 
653 |a Cardiovascular disease 
653 |a Hospitals 
653 |a Variables 
653 |a Patients 
653 |a Machine learning 
653 |a Stroke 
653 |a Datasets 
653 |a Vein & artery diseases 
653 |a Algorithms 
653 |a Cardiac arrhythmia 
653 |a Disability 
700 1 |a Jeong, Eunhwan  |u Department of Neurology, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>jeh132000@hanmail.net</email> (E.J.); <email>openmind-2u@hanmail.net</email> (H.K.) 
700 1 |a Kim, Haejong  |u Department of Neurology, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>jeh132000@hanmail.net</email> (E.J.); <email>openmind-2u@hanmail.net</email> (H.K.) 
700 1 |a Pyun, Hae Wook  |u Department of Radiology, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>biganhoo@naver.com</email> 
700 1 |a Kim, Haemin  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
700 1 |a Yeon-Ju Choi  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
700 1 |a Kim, Youngsoo  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
700 1 |a Jin, Suntak  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
700 1 |a Hong, Daeyoung  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
700 1 |a Dong Woo Lee  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
700 1 |a Su Yun Lee  |u Department of Neurology, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>jeh132000@hanmail.net</email> (E.J.); <email>openmind-2u@hanmail.net</email> (H.K.) 
700 1 |a Mun-Chul, Kim  |u Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang 37659, Korea; <email>soosungzzang@hanmail.net</email> (H.K.); <email>ns_yeonju@naver.com</email> (Y.-J.C.); <email>Youngsooooo@gmail.com</email> (Y.K.); <email>zin614@gmail.com</email> (S.J.); <email>hongdy2000@gmail.com</email> (D.H.); <email>nancbr2001@gmail.com</email> (D.W.L.) 
773 0 |t Diagnostics  |g vol. 11, no. 10 (2021), p. 1909 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2584363437/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2584363437/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2584363437/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch