Parallel and scalable processing of spatio-temporal RDF queries using Spark

保存先:
書誌詳細
出版年:GeoInformatica vol. 25, no. 4 (Oct 2021), p. 623
第一著者: Nikitopoulos Panagiotis
その他の著者: Vlachou Akrivi, Doulkeridis Christos, Vouros, George A
出版事項:
Springer Nature B.V.
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 2589634141
003 UK-CbPIL
022 |a 1384-6175 
022 |a 1573-7624 
024 7 |a 10.1007/s10707-019-00371-0  |2 doi 
035 |a 2589634141 
045 2 |b d20211001  |b d20211031 
084 |a 108511  |2 nlm 
100 1 |a Nikitopoulos Panagiotis  |u University of Piraeus, Department of Digital Systems, School of Information and Communication Technologies, Piraeus, Greece (GRID:grid.4463.5) (ISNI:0000 0001 0558 8585) 
245 1 |a Parallel and scalable processing of spatio-temporal RDF queries using Spark 
260 |b Springer Nature B.V.  |c Oct 2021 
513 |a Journal Article 
520 3 |a The ever-increasing size of data emanating from mobile devices and sensors, dictates the use of distributed systems for storing and querying these data. Typically, such data sources provide some spatio-temporal information, alongside other useful data. The RDF data model can be used to interlink and exchange data originating from heterogeneous sources in a uniform manner. For example, consider the case where vessels report their spatio-temporal position, on a regular basis, by using various surveillance systems. In this scenario, a user might be interested to know which vessels were moving in a specific area for a given temporal range. In this paper, we address the problem of efficiently storing and querying spatio-temporal RDF data in parallel. We specifically study the case of SPARQL queries with spatio-temporal constraints, by proposing the DiStRDF system, which is comprised of a Storage and a Processing Layer. The DiStRDF Storage Layer is responsible for efficiently storing large amount of historical spatio-temporal RDF data of moving objects. On top of it, we devise our DiStRDF Processing Layer, which parses a SPARQL query and produces corresponding logical and physical execution plans. We use Spark, a well-known distributed in-memory processing framework, as the underlying processing engine. Our experimental evaluation, on real data from both aviation and maritime domains, demonstrates the efficiency of our DiStRDF system, when using various spatio-temporal range constraints. 
653 |a Information processing 
653 |a Data exchange 
653 |a Storage 
653 |a Surveillance systems 
653 |a Electronic devices 
653 |a Query processing 
653 |a Distributed memory 
653 |a Computer networks 
653 |a Aircraft 
653 |a Datasets 
653 |a Aviation 
653 |a Resource Description Framework-RDF 
653 |a Surveillance 
653 |a Queries 
653 |a Data compression 
653 |a Efficiency 
653 |a Distributed processing 
653 |a Environmental 
700 1 |a Vlachou Akrivi  |u University of Piraeus, Department of Digital Systems, School of Information and Communication Technologies, Piraeus, Greece (GRID:grid.4463.5) (ISNI:0000 0001 0558 8585) 
700 1 |a Doulkeridis Christos  |u University of Piraeus, Department of Digital Systems, School of Information and Communication Technologies, Piraeus, Greece (GRID:grid.4463.5) (ISNI:0000 0001 0558 8585) 
700 1 |a Vouros, George A  |u University of Piraeus, Department of Digital Systems, School of Information and Communication Technologies, Piraeus, Greece (GRID:grid.4463.5) (ISNI:0000 0001 0558 8585) 
773 0 |t GeoInformatica  |g vol. 25, no. 4 (Oct 2021), p. 623 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2589634141/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2589634141/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch