Employee Attrition Prediction Using Deep Neural Networks

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Computers vol. 10, no. 11 (2021), p. 141
Үндсэн зохиолч: Al-Darraji, Salah
Бусад зохиолчид: Honi, Dhafer G, Fallucchi, Francesca, Abdulsada, Ayad I, Romeo Giuliano, Abdulmalik, Husam A
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 2602019634
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers10110141  |2 doi 
035 |a 2602019634 
045 2 |b d20210101  |b d20211231 
084 |a 231447  |2 nlm 
100 1 |a Al-Darraji, Salah  |u Department of Computer Science, University of Basrah, Basrah 61001, Iraq; <email>ayad.abdulsada@uobasrah.edu.iq</email> (A.I.A.); <email>hussam.akif@uobasrah.edu.iq</email> (H.A.A.) 
245 1 |a Employee Attrition Prediction Using Deep Neural Networks 
260 |b MDPI AG  |c 2021 
513 |a Journal Article 
520 3 |a Decision-making plays an essential role in the management and may represent the most important component in the planning process. Employee attrition is considered a well-known problem that needs the right decisions from the administration to preserve high qualified employees. Interestingly, artificial intelligence is utilized extensively as an efficient tool for predicting such a problem. The proposed work utilizes the deep learning technique along with some preprocessing steps to improve the prediction of employee attrition. Several factors lead to employee attrition. Such factors are analyzed to reveal their intercorrelation and to demonstrate the dominant ones. Our work was tested using the imbalanced dataset of IBM analytics, which contains 35 features for 1470 employees. To get realistic results, we derived a balanced version from the original one. Finally, cross-validation is implemented to evaluate our work precisely. Extensive experiments have been conducted to show the practical value of our work. The prediction accuracy using the original dataset is about 91%, whereas it is about 94% using a synthetic dataset. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Artificial neural networks 
653 |a Decision making 
653 |a Neural networks 
653 |a New employees 
653 |a Classification 
653 |a Algorithms 
653 |a Decision trees 
653 |a Artificial intelligence 
700 1 |a Honi, Dhafer G  |u Department of Computer Science, University of Basrah, Basrah 61001, Iraq; <email>ayad.abdulsada@uobasrah.edu.iq</email> (A.I.A.); <email>hussam.akif@uobasrah.edu.iq</email> (H.A.A.) 
700 1 |a Fallucchi, Francesca  |u Department of Engineering Science, Guglielmo Marconi University, 00193 Roma, Italy; <email>r.giuliano@unimarconi.it</email> 
700 1 |a Abdulsada, Ayad I  |u Department of Computer Science, University of Basrah, Basrah 61001, Iraq; <email>ayad.abdulsada@uobasrah.edu.iq</email> (A.I.A.); <email>hussam.akif@uobasrah.edu.iq</email> (H.A.A.) 
700 1 |a Romeo Giuliano  |u Department of Engineering Science, Guglielmo Marconi University, 00193 Roma, Italy; <email>r.giuliano@unimarconi.it</email> 
700 1 |a Abdulmalik, Husam A  |u Department of Computer Science, University of Basrah, Basrah 61001, Iraq; <email>ayad.abdulsada@uobasrah.edu.iq</email> (A.I.A.); <email>hussam.akif@uobasrah.edu.iq</email> (H.A.A.) 
773 0 |t Computers  |g vol. 10, no. 11 (2021), p. 141 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2602019634/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2602019634/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2602019634/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch