Differential Property Prediction: A Machine Learning Approach to Experimental Design in Advanced Manufacturing

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:arXiv.org (Dec 3, 2021), p. n/a
Үндсэн зохиолч: Truong, Loc
Бусад зохиолчид: Choi, WoongJo, Wight, Colby, Coda, Lizzy, Emerson, Tegan, Kappagantula, Keerti, Kvinge, Henry
Хэвлэсэн:
Cornell University Library, arXiv.org
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full text outside of ProQuest
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 2607083821
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2607083821 
045 0 |b d20211203 
100 1 |a Truong, Loc 
245 1 |a Differential Property Prediction: A Machine Learning Approach to Experimental Design in Advanced Manufacturing 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2021 
513 |a Working Paper 
520 3 |a Advanced manufacturing techniques have enabled the production of materials with state-of-the-art properties. In many cases however, the development of physics-based models of these techniques lags behind their use in the lab. This means that designing and running experiments proceeds largely via trial and error. This is sub-optimal since experiments are cost-, time-, and labor-intensive. In this work we propose a machine learning framework, differential property classification (DPC), which enables an experimenter to leverage machine learning's unparalleled pattern matching capability to pursue data-driven experimental design. DPC takes two possible experiment parameter sets and outputs a prediction of which will produce a material with a more desirable property specified by the operator. We demonstrate the success of DPC on AA7075 tube manufacturing process and mechanical property data using shear assisted processing and extrusion (ShAPE), a solid phase processing technology. We show that by focusing on the experimenter's need to choose between multiple candidate experimental parameters, we can reframe the challenging regression task of predicting material properties from processing parameters, into a classification task on which machine learning models can achieve good performance. 
653 |a Machine learning 
653 |a Design of experiments 
653 |a Mathematical models 
653 |a Manufacturing 
653 |a Classification 
653 |a Material properties 
653 |a Pattern matching 
653 |a Extrusion 
653 |a Solid phases 
653 |a Process parameters 
700 1 |a Choi, WoongJo 
700 1 |a Wight, Colby 
700 1 |a Coda, Lizzy 
700 1 |a Emerson, Tegan 
700 1 |a Kappagantula, Keerti 
700 1 |a Kvinge, Henry 
773 0 |t arXiv.org  |g (Dec 3, 2021), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2607083821/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2112.01687